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DEPARTMENT OF THE ARMY

HEADQUARTERS US ARMY AVIATION MATERIEL LABORATORIES
FORT EUSTIS. VIRGINIA 23604

Under prior contracts, feasibility of the one-, two-, and
three-dimensional Dynamic Antiresonant Vibration Isolator
(DAVI) was established through analyses and controlled
laboratory testing.

This contract was initiated to more fully assess the potential

of this concept. A small rectangular platform, isolated at

each corner by a DAVI, was installed in the cabin area of a

UH-2 helicopter and flight tested, thereby subjecting the i
isolators to the rather complex multidirectional vibration

environment typical of helicopters.

Test results of both the one- and two-dimensional configura-
tion of the DAVI were disappointing. These configurations

had an offset between the isolated pivot and the spring elastic
axis. It was concluded that this offset causes resonant and
antiresonant frequencies of the isolated platform's pitching
and rolling modes to differ markedly from those in the trans-
lational response modes. Consequently, although the isolated
platform was tuned to an antiresonance coincident with the
principal frequency of excitation for the vertical (and
longitudinal for two-dimensional DAVI) response mode, it was
under the dominant influence of pitching and rolling modes, {
thus causing generally poor performance.

The pivot-spring offset was eliminated in the three-dimensional
DAV1s, and in the ensuing flight test excellent vibration
isolation was obtained. For all configurations tested, agree-
ment between analyses and test was poor, primarily because the
hub forces and moments used in the anaiyses only reasonably
approximate the excitation of the isolated platform. Precise
definition of the hub forces and moments that would reproduce

the excitation vibration levels and phases obtained in the flight
tests was not possible, thus precluding good correlation.

In related work, the DAVI concept was shown to be analytically
‘feasible for helicopter rotor isolation for a number of configura-
tions ranging from the LOH to the HLH. A full-scale experimental
demonstration of this feasibility using the three-dimensional

DAVI is currently under way.
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ABSTRACT

This report contains the results of a flight test evaluation
of the Dynamic Antiresonant Vibration Isolator (DAVI). 1In
this program, three series of tests were conducted for four
different weight configurations of a DAVI isolated platform.
The first series of tests evaluated the unidirectional DAVI,
the second series of tests evaluated the two-dimensional
DAVI, and the third series of tests evaluated the three-
dimensional DAVI. The test results showed that the uni-
directional and the two-dimensional DAVI isolated platforms
did not achieve the expected reduction in vibration and, in
some conditions, reduction was very poor. However, the
reduction of vibration obtained on the three-dimensional
DAVI isolated platform was excellent. A comparison of
r2sults obtained on the three-dimensional isolated platform
and a conventionally isolated platform shows that the three-
dimensional DAVI isolated platform had the lower vibration
level and was less sensitive to changes in isolated weight
or to changes in helicopter rotor speed (excitation frequency)./’
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FOREWORD

This research program for the flight testing of the Kaman
Dynamic Antiresonant Vibration Isolator (DAVI) was performed
by Kaman Aerospace Corporation, Division of Kaman Corporation,
under Contract DAAJ02-67-C-0060, for the U. S. Army Aviation
Materiel Laboratories, Fort Eustis, Virginia.

The program was conducted under the technical direction of
Mr. J. H. McGarvey, Contracting Officer's Representative.

Principal Kaman personnel in this procgram were Messrs
A. D. Rita and W. Braem, Flight Test Engineers; E. P. Schuett,
Research Engineer; and R. Jones, Chief of Aeromechanics
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INTRODUCTION

Research on the Dynamic Antiresonant Vibration Isolator
(DAVI) was sponsored by the U. S. Army Aviation Materiel
Laboratories (USAAVLABS) under Contract DA 44-177-AMC-196(T)
and Contract DA 44-177-AMC-391(T). The results of this
research are reported in References 1 and 2, wherein it was
shown that the DAVI, which is a passive vibration isolator,
can provide a high degree of isolation at low frequency with
very low static deflection. At a predetermined antiresonant
frequency, the nearly zero transmissibility across a DAVI is
independent of the isolated mass. The analysis and test
showed that the DAVI gives significantly better shock iso-
lation than a standard isolator with the same spring rate.

However, this experimental research was conducted under
controlled laboratory conditions. Further research was
required to determine the performance of the DAVI subject
to an actual helicopter vibratory environment, to determine
possible design change requirements when subject to such an
environment, and to determine the number of directions of
DAVI isolation required to obtain good vibration reduction.
Therefore, unidirectional, two-dimensional, and three-
dimensional DAVI's were tested. Unidirectional DAVI flight
testing was done while two-dimensional and three-dimensional
DAVI's were concurrently being laboratory tested upon the
conclusion of which they, too, were flight tested. 1In all
cases, exploratory flight tests were conducted with only
nominal changes made to improve performance prior to execu-
tion of each flight test plan.

The DAVI platform used in this flight test program was
essentially the same as that used in the previous USAAVLABS
contracts, reported in References 1 and 2, requiring only
minor modification for installation in the Kaman UH-2 heli-
copter. The unidirectional DAVI's were installed such that
the DAVI isolation occurred only in the vertical direction
and the system was essentially rigid in the la“eral and
longitudinal directions. The two-dimensional D..VI's were
installed such that the DAVI isolation occurred in the
vertical and longitudinal directions and was essentially
rigid in the lateral direction. The three-dimensional DAVI's
gave isolation in the vertical, lateral, and longitudinal
directions. All three DAVI configurations were tuned to give
an antiresonance at 18.5 cps, which is the predominant exci-
tation of the UH-2B helicopter at 100 percent rotor rpm and
of the UH-2C helicopter at 98 percent rotor rpm.



The flight test program consisted of similar steady-state
and maneuver conditions for the three DAVI configurations.
For all three DAVI configurations, platforms with payloads
of 50, 150, and 200 pounds and 200 pounds with a three-inch
center of gravity offset were test flown. For the uni-
directional DAVI isolated platform, very good reduction in
vertical vibration was obtained on the 50-pound platform for
the 30-knot and 120-knot steady-state conditions. Reduction
in vertical vibration was also obtained for the other plat-
form weights at 120 knots. However, at the 30-knot steady-
state flight conditions, with 150-pound, 200-pound, and
200-pound with a three-inch center of gravity offset plat-
forms, the results were poor. These poor results are
attributed to lateral and longitudinal inputs not being
isolated by the unidirectional DAVI and introducing pitching
and rolling of the platform.

In the series of tests made on the two-dimensional DAVI
isolated platform, three different types of pivois were
tested. The pivot configurations were flexural, spherical
bearing, and rubber type. Also in this series of tests, a
platform with conventional isolation was tested. The two-
dimensional DAVI's were designed with a large offset between
the spring axis and the isolated pivot, as seen in Figure 1.

/

- SPRING AXIS

ISOLATED PIVOT

Figure 1. Schematic of Two-Dimensional DAVI.




The reason for this type of design was easy interchange

of the pivot configurations to be ta2sted. It was realized
at the time of the design that the offset of the pivots from
the spring axis would introduce a couple into the isolated
platform; however, this couple would be cancelled with the
proper orientation of the DAVI's in the system.

For the pivot configuration tested, the reduction of vi-
bration obtained on the platform for all weight configura-
tions was poor. In fact, for the 50-pound and 150-pound
platforms, large amplification was obtained. This was
attributed to the offset between the pivots and the springs.
It was determined that although the couple was cancelled by
orientation of the DAVI for pure translational inputs, the
antiresonant frequency due to a rotational input was not the
same as that for a translational input.

The results obtained from the series of tests made on the
three-dimensional DAVI isolated platform were excellent.

For all weight configurations of the platform, a reduction
of vibration was obtained. 1In comparing these results to an
equivalent conventional isolation system tested, the three-
dimensional DAVI had a lower vibration lev¢’. and was less
sensitive to change in isolated weight or to change in heli-
copter rotor speed (excitation frequency).



DAVI PLATFORM CONFIGURATIONS

DAVI MODELS

The unidirectional DAVI models used in this flight test
program were the same ones used in the USAAVLABS program
under Contract DA 44-177-AMC-391(T). The results of that
study are reported in Reference 2. These DAVI models were
designed to have a variable r* from .75 inch to 2.0 inches.
Without changing any of the physical hardware, an anti-
resonance can be obtained from 4 cps to 30 cps. Figure 2
shows the unidirectional DAVI used in this program.

Figures 3, 4, and 5 show the two-dimensional DAVI models
used in this flight test program. Figure 3 shows the two-
dimensional DAVI utilizing spherical bearings as the pivots.
Figure 4 shows the two-dimensional DAVI utilizing flexural
pivots as a universal joint. Figure 5 shows the two-
dimensional DAVI utilizing rubber working in shear as the
pivot. The supports produce an effective pivot distance,
and load application causes rotation of the bhar.

The three-dimensional DAVI models used in this program were
the same ones used in the USAAVLABS program under Contract
DAAJ02-69-C-0003. The results of this study are reported

in Reference 3. Figures 6 and 7 show a photograph and
schematic, respectively, of the three-dimensional DAVI,

which requires two inertia bars. The unidirectional inertia
bar couples with motion along the vertical axis of the
spring, and utilizes Bendix flexural pivots for the input
pivot and a spherical bearing for the isolated pivot. The
isolated pivot is on the vertical elastic axis of the springs.
The two-dimensional bar couples with the in-plane motions of
the springs and utilizes spherical bearings for both the iso-
lated and input pivots. The input pivot of the two-dimensional
inertia bar and the isolated pivot of the unidirectional in-
ertia bar make up a common pivot. The isolated pivot of the
two-dimensional inertia bar is on the in-plane elastic axes
of the spring system. Table I gives a summary of the phys-
ical parameters of the DAVI models used in the flight test
program.

*r is the distance between pivots

v e




Figure 2. Unidirectional DAVI Model.
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Three-Dimensional DAVI Model.

Figure 6.




1TWO-DIMENSIONAL
INERTIA BAR

OUTPUT
ATTACHMENT
PLATE

BENDIX
PIVOTS
s
INPUT UNIDIRECTIONAL
ATTACHMENT INERTIA BAR
PLATE

Figure 7. Schematic of the Three-
~ Dimensional DAVI.
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TABLE I.

PHYSICAL PARAMETERS OF THE DAVI
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FLIGHT TEST VEHICLE

The flight test program utilized Government-owned Kaman
UH-2 helicopters. The unidirectional DAVI models were
tested on UH-2B helicopter BuNo 147978, and the two-
dimensional DAVI models were tested on UH-2B helicopter
BuNo 147204. The three-dimensional DAVI models were tested
on UH-2C helicopter BuNo 147981. The Kaman UH-2 helicopter
is a four-bladed servo flap controlled rotor system. The
predominant excitation frequency of this helicopter is
four-per-rev of the main rotor, which is 18.44 cps at 100
percent rotor rpm for the UH-2B models and 18.76¢ cps at 100
percent rotor rpm for the UH-2C model. All of the DAVI
models were individually tuned to give an antiresonance at
18.5 cps, which is essentially the four-per-rev frequency of
the main rotor at 100 percent rotor rpm for the UH-2B models
and 98 percent rotor rpm for the UH-2C model.

TUNING OF THE DAVI MODELS

The tuning of all of the DAVI models was done on the con-
tractor's anti-friction test fixture. Fiqure 8 shows the
type of test setup used to tune the DAVI models. An electro-
magnetic shaker was connected to the base weight and was used
for the excitation. Two velocity pickups were attached to
the input and isolated weights. The outputs of these pickups
were fed to a vibration meter and the results were manually
recorded. The movable weight on the DAVI inertia bar was
then manually adjusted to obtain the proper antiresonant
frequency of 18.5 cps. The two inertia bars of the three-
dimensional DAVI model were tuned to give the antiresonant
frequency »: 18.5 cps for the vertical and in-plane directionms.

PLATFORM

The platform used in this flight test program is essentially
the same as used in previous DAVI contracts and is described
in Reference 1. The platform was modified for this contract
by changing the top plate or isolated plate of the platform
to a 20.25-inch-long by 18.25-inch-wide by 0.5-inch-thick
steel plate. This served two purposes: the tare weight of
the modified platform was 50 pounds and the center of
gravity of the isolated platform above the DAVI pivot axis
was reduced to 2.5 inches. 100 pounds and 150 pourds of
5.5-inch-diameter cylindrically shaped lead weights were
located in the center of the 50-pound platform to obtain

the 150-pound and 200-pound platform. This shape of lead
weight was used to minimize the mass moment of inertia of
the isolated platform. The 200-pound platform with a

12




three-inch center «f gravity was obtained by offsetting the
150 pounds in the lateral direction.

The unidirectional DAVI platform was installed in the cargo
area of the Kaman UH-2 helicopter. The bottom plate of un-
isolated plate was bolted to the cargo floor at the cargo
tie-down points. Figure 9 is a schematic of the installation
of the unidirectional DAVI platform in the UH-2 helicopter
and Figure 10 shows the unidirectional isolated platform in
the Kaman UH-2 helicopter. The two-dimensional and three-
dimensional DAVI isolated platforms were installed in the
UH-2 helicopter in the same manner. Both were modified to
reduce the vertical distance of the center of gravity of the
.-atform to be in line with the pivot axis of the DAVI. This
modification is shown in Figure 11.

INSTRUMENTATION

For all of the DAVI platform configurations tested, ten
accelerometers were used. For the unidirectional DAVI
platform, four accelerometers were installed on the iso-
lated platform, one in each corner approximately above each
DAVI isolated pivot, to obtain the vertical accelerations of
the isolated platform and four accelerometers were installed
on the lower plate (iunput source), one approximately under
each of the upper accelerometers, to obtain the vertical ac-
celeraticn inputs to the isolated platform. Two acceler-
ometers were installed on the lower plate (input source) to
determine the lateral and longitudinal acceleration inputs
to the isolated platform.

For the two-dimensional and three-dimensional platforms,
five accelerometers were installed on the isolated platform,
one in each forward corner of the platform and one at approxi-
mately the center of gravity of the platform, tc obtain
vertical accelerations. Two accelerometers were installed
at approximately the center of gravity of the platform to
obtain the lateral and longitudinal accelerations. PFive
accelerometers were installed on the lower plate (input
source) , one approximately under each of the upper or iso-
lated plate accelerometers, to obtzin the vertical, lateral
and longitudinal acceleration inputs to the isolated plat-
form.

The outputs from all of the accelerometers were fed through
the appropriate signal conditioning equipment and were per-
manently recorded on a twelve-inch oscillograph.

13



*STOPOW IAVA butung xo3 dnyeg

I83L

°g a2xnbtg

14



*193dOOTTSH Z-HA uRwe) UT poTIRISUI
IAVQ TRUOT3IOLATPTUA FO OTFRUWSYOS

‘6 92xnb1Jg

&

9 <

e

L

15

N



Figure 10. Unidirectional DAVI Isolated Platform
Installed in the UH-2 Helicopter.
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THREE-DIMENSIONAL DAVI

THREE-DIMENSIONAL DAVI PLATFORM

Two three-dimensional DAVI platform configurations were
tested. Figure 12 shows a schematic of the three-
dimensional DAVI platform with the unidirectional inertia
bar oriented in the longitudinal direction.

PR =7~
OO L

I |
r* :"'l FORWARD
L |
(| LJ ‘
F r
11 Ll
LlJ :J

[©C S

Figure 12, Schematic of the Three-Dimensional
DAVI Platform With the Unidirectional
Inertia Bar Oriented in the Longi-
tudinal Direction.

Figure 13 shows a schematic of the three-dimensional DAVI
platform with the unidirectional inertia bar oriented in
the lateral direction. This schematic also shows the
location of the ten accelerometers.
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Figure 13.
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S 1
®) 1
i L I I,
e \J

é;— VERTICAL, LATERAL
AND, LONGITUDINAL
PICKUPS

VERTICAL, LATERAL
AND LONGITUDINAL
PICKUPS

Schematic of the Three-Dimensional DAVI
Platform With the Unidirectional Inertia
Bar Oriented in the Lateral Direction.
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Tpe three~dimensional DAVI is designed such that the isolated
pivots are on the elastic axis of the spring system to reduce
internal coupling in the DAVI. However, as indicated in

Figure 13, the springs are offset a distance (a) from the pivot

axes of the DAVI inertia bar. This spring offset produces a
different antiresonant frequency for a rotational input than
for a translational input. Also the distance r between the
non-igsolated and isolated pivots produces a different anti-
resonant frequency for a rotational input than for a trans-
lational input. The antiresonant frequency for a trans-
lational input as obtained from Reference 2 is

W = — (1)

The antiresonant frequency for a DAVI with offset springs
gqually distant from the inertia bar for a rotational input
is
2
2 _ a 2
wAl = (1 + ;7)NA (2)

and the antiresonant frequency for a rotational input in-
cluding the r effect is

w, 2= (w2 (3)
A2 1+ r/b'"A

It is seen from these equations that different antiresonant
frequencies are obtained depending upon the type of input

and DAVI arrangement. In the three-dimensional DAVI isolated
platforms tested, a >> e and b >> r, so that the difference
in antiresonant frequencies was a minimum. However, two
orientations of the unidirectional inertia bar were tested

to determine the effects of the difference in antiresonance
frequency on the response of the isolated platform.

For the two orientations of the three-dimensional DAVI,

four different weights of the platform were tested: 50 pounds,
150 pounds, 200 pounds, and 200 pounds with a three-inch
center of gravity offset in the lateral direction.

FLIGHT TEST CONDITIONS

The three-dimensional DAVI isolated platform was tested
under steady-state or level flight conditions and transient
conditions. The flight testing was conducted on Kaman UH-2C

20
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helicopter BuNo 14798l. Table II gives the conditions
tested. These were all tested for a helicopter gross
weight of 9830 pounds.

FLIGHT TEST RESULTS

Figures 14 through 17 show typical oscillograph traces ob-
tained in the level flight conditions. These figures show
the results obtained on the three-dimensional DAVI platform
for all weight configurations at 30 knots and at 98 percent
rotor rpm. At this rotor speed the predominant four-per-rev
excitation most nearly coincides with the tuned antiresonant
frequency of the DAVIs. 1Isolation was obtained for all four
weight configurations of the platform. Figures 18 through 21
show typical oscillograph traces obtained for the transient
conditions of landing, which was more critical than rotor
engagement. No abnormal g level was obtained for any of the
weight configurations tested.

A 48-point Fourier analysis was done on the test data to
obtain the magnitude of the predominant harmonics. This
analysis was done on all of the steady-state test conditions.
Table IIXI gives the frequencies of the predominant harmonics
of the UH-2C helicopter.

The Fourier analysis results are given in Table IV for the
one-per-rev and eight-per-rev and in Figures 22 through 37
for the four-per-rev.

It is seen from Table IV that the one-per-rev and eight-
per-rev vibration levels are in most cases of very low
magnitude. In comparing the input to the isolated platform
with the outputs on the isolated platform, the results are
as expected. In most cases there is an increase in the
one-per-rev vibration level on the isolated platform. This
is expected, since the natural frequencies of the platform
are above one-per-rev. However, the increase in vibration
level was a minimum, and no actual one-per-rev problem on
the platform occurred. In most cases a reduction of eight-
per-rev vibration levels occurred on the platform. This is

also as expected.
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TABLE I1. THREE-DIMENSIONAL DAVI ISOLATED
PLATFORM FLIGHT TEST CONDITIONS
Platform
Center of
Platform Gravity Main Rotor
Weight Offset Speed Airspeed

(1b) (in.) (% rpm) (kn)

50 0 92 to 106 30

50 96 to 106 120

50 0 100 Landing

50 0 0 to 100 Ground Rev-Up
150 0 92 to 106 30
150 0 96 to 106 120
150 0 100 Landing
150 0 0 to 100 Ground Rev-Up
200 0 92 to 106 30

200 0 96 to 106 120
200 0 100 Landing

200 0 0 to 100 Ground Rev-Up
200 3 92 to 106 30
200 3 96 to 106 120
200 3 100 Landing
200 3 0 to 100 Ground Rev-Up
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TABLE IIXY. FREQUENCIES OF THE PREDOMINANT HAPMONICS
OF THE UH-2C HELICOPTER
%ain Rotor Frequencies of Predominant Harmonics
Speed (cps)
(¥ rpm) 1 4 8
92 4.31 17.24 34.48
94 4.41 17.64 35.28
96 4.50 18.00 36.00
98 4.59 18.36 36.72
100 4.69 18.76 37.52
102 4.78 19.12 38.96
104 4.87 19.48 38.96
106 4.97 19.88 39.76
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TABLE IV. PREDOMINANT VIBRATION LEVELS ON THE
THREE-DIMENSIONAL ISOLATED PLATFORM

50-Pound Platform - 30 Knots

Main Rotor Harmonic Vibration Level (:gL4

Unidirectional Inertis Bar Orientation

Lateral Longitudinal
Main
Rotor One/Rav Eight/Rev One/Rev Eight/Rev
Speed Pickup
A rpm) Location Input Output Input Output| Input Output Input Output
Lft Pwd Vt 019 .017 .052 .028 .011 .011 .020 .013
Rt Pwd Vt .010 .007 .033 .017 .006 .0N1 .007 .005
92 Center Vt 017 .012 .033 .019 .004 .006 .017 .005
Center Lat .004 .003 .024 .017 .004 .005 NNE  .06G7
Center Long .{.016 .017 .010 .021 .022 .018 .014 .025
Lft Fwd Vt .015 .014 .039 .N26 .019 .016 .034 .009
Rt Pwd Vt .012 .01l1 .035 .n21 .011 .NOFR .023 .018
94 Center Vt .025 ,012 .042 .019 007 011 .027 .028

Center Lat .004 .005 .020 .011 .008 .004 .007 .012
Center Long .|.011 .020 031 .016 .018 .02l .021 .027

Lft Pwa Vt [.016 .017 .015 .016 |.019 .015 .065 .016
Rt Pwd Vt  |.007 .010 .004 .009 |.014 .010 .047 .040
96 Center Vt  [.020 .013 .011 .007 [.014 .011 .045 .021
Center Lat |.005 .006 .018 .0l10 |.004 .007 .027 .021
Center Long.|.013 .018 .009 .0l4 |.013 .019 .04 .033

Lft Pwd Vt [.004 .008 .094 .045 |.009 .006 .148 .044
Rt Fwd V¢t .013 .010 .111 .058 |[.014 .011 .113 .064
98 Center Vt .011 .006 .098 .066 |.008 .00R .127 .064
Center Lat [.002 .006 .008 .012 |.009 .009 .020 .018
Center Long, (.01 .017 .041 .027 |.021 .02l .065 .060

Lft Fwd Vt .018 .023 .034 .018 .008 .00S .121  .032
Rt Pwd Vt .014 .014 .038 .014 .011 .007 .103 .048
100 Center Vt .012 .014 .027 .025 .012 .010 .112 .051
Center Lat .001 .006 .025 .011 .006 .006 .030 .013
Center Long.|.012 ,015 .023 .015 .008 .01S .060 .061

LEft Fwd Vt .016 .020 .092 .042 .026 .030 .047 .011
Rt Fwd Vt .020 .017 .104 .039 016 .07 .014 .004
102 Center Vt .021 .0l8 .086 .057 .018 .023 .025 .033
Center Lat .011 .o008 .018 .022 .003 .006 .008 .005
Center Long.|.018 .017 .028 .028 .021 .019 .035 .034

Lft Fwd Vt .012 .016 .091 .044 027 .021 .053 .013
Rt Fwd Vt .022 .014 .092 .043 .015 .013 .027 .013
104 Center Vt .012 .014 .084 .060 .023  .017 .031 .029
Cernter Lat .004 .006 .020 .029 .002 .006 022 .015
Center Long-|.026 .018 .063 .028 .019 .019 .032 .035
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TABLE IV - Continued
50-Pound Platform - 30 Knots
Main Rotor Harmonic Vibration Level (tg)
. Unidirectional Inertia Bar Orientation
Lateral Longitudinal
Main
Rotor One/Rev Eight/Rev Dne/Rev Eight/Rev
Speed Pickup
(¢ rpm) Location Input Output Input Output|Input Output Input Output
Lft Pwd Vt .026 .019 .169 .070 .021 .020 .022 .009
Rt Pwd Vt .007 .012 .200 .100 .014 ,013 .021 .026
106 Center Vt .017 .012 .146 .092 .016 .014 .014 .027
Center lLat .014 .003 .015 .025 .007 .002 .014 .009
Center Long.|.016 .013 .093 .050 .011 .016 .028 .034
50-Pound Platform - 120 Knots
Lft FPwd Vt .013 .017 .024 .019 .061 .070 .016 .01l
Rt Pwd Vt .023 .021 .030 .017 .071 .067 .040 .017
96 Center Vt .017 .018 .022 .013 063 .071 .024 .031
Center Lat .006 .008 .032 .036 .004 .010 .030 .020
Center long.|.010 .011 .034 .014 .023 .023 .048 .027
Lft Pwd Vt .044 .048 .012 .026 .052 .058 .014 .008
Rt Pwd Vt .060 .057 .029 .024 047 .041 .029 .025
98 Center Vt .048 .052 .013 .007 .043 .044 .015 .033
Center Lat .010 .005 .010 .006 011 .013 .007 .012
Center Long.|.029 .025 .027 041 017 .025 .022 .028
Lft Fwd Vt .053 .059 .056 .042 .038 .041 .009 .005
Rt Pwd Vt .063 .060 .019 .060 .055 .050 .013 .009
100 Center Vt .051 .054 .067 .024 .048 .044 .010 .027
Center Lat .005 .015 .058 .066 .033 .017 .008 .008
Center Long, |[.022 .025 .026 .022 .032 .046 .031 .021
Lft Fwd Vt .017 .025 .033 .014 .033 .041 .011 .01l0
Rt Fwd Vt .026 .022 .004 .023 .048 ,050 .010 .006
' 102 Center Vt .019 .024 .015 .009 040 .044 .035 .030
Center lLat .011 .014 .009 .021 .008 .003 .015 .014
Center Long, {.018 .014 .047 .021 .015 .024 .033 .021
Lft Pwd Vt .028 .036 .008 .017 .025 .028 .034 .010
, Rt Fwd Vt .048 .047 .015 .017 .036 .034 .021 .015
104 Center Vt .034 .039 .005 .003 .033 .034 .025 .,028
Center Lat .009 .015 012 .012 .013 .017 .015 .006
Coenter Long, [.028 .029 .047 .022 .015 .024 .029 .054
Lft Pwd Vt .014 .014 .032 .019 .059 .064 .033 .020
Rt Pwd Vt 023 .022 .024 .020 .069 .072 .032 .027
106 Center Vt .016 .023 .024 .024 .063 .066 .028 .025
Center Lat .010 .080 .008 .013 021 .021 .004 .003
Center Long. {.028 .027 .013 .018 .021 .034 .058 .056
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TABLE IV - Continued

150-Pound Platform - 30 Knots

Main Rotor Harmonic Vibration Level j;gl

Unidirectional Inertia Bar Orientation

R P ST Sl ki 3 e

Lateral Longitudinal
Main
Rotor One/Rev Eight/Rev One/Rev Eight/Rev
Speed Pickup
(¢ rpm) Location Input Output Input Output| Input Output Input Output

Lft Pwd Vt .014 .023 .057 .013 .006 .007 .093 .033
Rt Pwd Vt 023 .025 .055 .016 .011 .014 .050 .047
92 Center Vt .019 .023 .053 .0l2 .007 .011 .067 .039
Center Lat .007 .004 .018 .007 .002 .004 .045 .026
Center Leng. |.010  .011 .013 .004 .007 .008 .025 .020

Lft Fwd Vt 007 .013 .095 .009 .007 .014 .041 .020
Rt Fwd Vt .011 .020 .095 .031 .011 .017 .031 .049
94 Center Vt .013 .019 .093 .02 .008 .016 .048 .032
Center Lat .008 .002 .016 .008 .001 .003 .028 .017
Center Long. |.008 .009 .033 .012 .007 .014 .017 .018

Lft Pwd Vt |.031 .040 .152 .038 {.002 .0O7 .051 .03l
Rt Fwd Vt .036 .042 <134 .029 .006 .010 .062 .063
96 Center Vt .030 .038 135 .b24 .005 .006 .059 .044
Center Lat .002 .005 .027 .008 |.005 .006 .021 .006
Center Long-|.006 .011 .049 .014 .006 .008 .04 .026

Lft Fwd Vt 007 .011 .093 .047 .026 .028 .069 .060
Rt Fwd Vt .014 .013 .098 .045 .025 .029 .068 .08l
98 Center Vt .009 .012 .090 .020 .025 .030 .063 .058
Center lat .007 .001 .022 .013 .007 .005 .011 .005
Center long.[.013 .010 .050 .016 .004 .011 .038 .027

Lft Pwd Vt .006 .01l .066 .031 011 .015 .082 .049
Rt Pwd Vt .011 .011 .059 .026 .015 .021 .067 .055
100 Center Vt .007 .012 .055 .007 .020 .013 067 .043
Center Lat .005 .006 .008 .004 .005 .005 .024 .013
Center lLong, (.010 .011 .019 .019 .011 .015 027 .024

Lft Pwd Vt .012 .,023 .065 .060 019 .024 .081 .038
Rt FPwd Vt .016 .022 .097 .048 .016 .019 .047 .050
102 Center Vt .018 .022 .079 .007 015 ,022 .056 .037
Center lLat .007 .005 .027 .029 005 .004 .008 .010
Center lLong. [.005 .013 .066 .025 .011 .008 .021 .0l6

Lft Fwd Vt .020 .030 .078 .104 .019 .026 .067 .062
Rt Fwd Vt .024 .032 .123  ,077 .018 .018 .042 .072
104 Center Vt 021 .029 -090 .003 .0l6 .021 .045 .067
Center Lat .004 .006 .033 .031 .006 .001 .027 .008
Center Long. |.009 .014 .089 .037 .010 .012 .043 .021
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TABLE IV - Continued

150-Pound Platform - 30 Knots

Main Rotor Harmonic Vibration Level (:g)

Unidirectional Inertia Bar Orientation

Lateral Longitudinal
Main
Rotor One/Rev Eight/Rev One/Rev Eight/Rev
Speed Pickup
(8 rpm) Location Input Qutput Input Output]Input Output Input Output
Lft Fwd Vt .030 .038 .085 .064 .022 .029 112,124
Rt Fwd Vt .026 .034 .086 .058 .019 .023 .082 .126
106 Center Vt .026 .036 .062 .008 .022 ,031 .070 .113
Center Lat .005 .01l10 .022 .025 .005 .005 .011 .007
Center Long.|.01C .018 .082 .032 .016 .018 .060 .034
l%p-?ound Platform - 120 Knots
Lft Pwd Vt  .0524  ,037 .040 .018 .040 .048 .019 .039
Rt Fwd Vi .034a .038 .055 .06 .053 .059% .042 .052
96 Center Vt .023 .034 .032 .007 .041 .053 .030 .048
Center Lat .008 .005 .025 .016 .006 .004 .025 .010
Centexr Long.|(.018 .026 061 .022 .023 .021 .055 .026
Lft Fwd Vt .026 .040 .022 .020 .044 .062 .009 .024
Rt Fwd Vt .032 .046 .042 .015 .059 .069 .030 .047
98 Center Vt 022 .043 .018 .009 .048 .064 014 .045
Center Lat .011 .013 .0080 .008 .008 .009 .029 .015
Center long,;.018 .029 .029 .018 .026 .028 .046 .024
Lft Pwd Vt .005 .019 .018 .056 .034 .048 015 .029
Rt hwd Vt .012 .022 .038 .027 .062 .051 .007 .041
100 Center Vt .011 .020 .021 .019 .054 .040 .007 .040
Center Lat .006 .015 .032 .014 .001 .010 .021 .013
Center Long _|.025 .027 .053 .015 .042 .029 .025 .016
Lft Pwd V4 .037 .049 .021 .026 .061 .094 .036 .05Z
Rt Fwd Vt .046 .053 .015 .011 .078 .091 .022 .073
102 Center Vt .038 .055 .004 .017 .060 .091 .022 .059
Center Lat .007 .003 .027 .009 .010 .018 .008 .009
Center Long, |.028 .036 ,039 .004 .021 .025 .051 .023
Lft Fwd Vt .020 .038 .026 .018 .021 .026 .058 .055
Rt Fwd Vt .040 .044 .039 .017 .025 .037 .042 .066
104 Center Vt .029 .038 .021 .007 .021 .031 .040 .055
Center Lat .005 .010 .003 .003 .005 .004 .006 .010
Center long, {.022 .022 .054 .015 .026 .030 .068 .022
Lft Fwd Vt .025 .035 .029 .014 .033 .036 .035 .018
Rt Fwd Vt .036 .036 .025 .004 .019 .012 .026 .023
106 Center Vt .023 .024 .027 .006 .024 .022 .030 .043
Center Lat .005 .014 .011  .010 .015 .011 .018 .007
Center Long, |.010 .019 .038 .014 .029 .037 .041 .010
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TABLE IV - Continued

200-Pound Platform - 30 Knots

Main Rotor Harmonic Vibration Level (}g)

Unidirectional Inertia Bar Orientation

Lateral Longitudinal
Main
Rotor One/Rev Eight/Rev One/Rev Eight/Rev
Speed Pickup
(8 rpm) Location Input Output Input Output|Input Output Input Output
Lft ™wd Vt .049 .072 .017 .015 .011 .019 .058 .041
Rt Pwd Vt .040 .056 .021 .0le .011 .01e6 .024 .048
92 Center Vt .041 .058 015 .002 .011 .018 044 .046
Center Lat .013 .004 .011 .007 .003 .00% .019 .007
Center long. |.032 .035 015 .006 .020 .020 .024 .028
Lft Fwd Vt .041 .054 .011 .07 .009 .0l10 .035 .039
Rt Pwd Vt .026 .036 .019 .016 .003 .005 039 .044
94 Center Vt .029% ,.044 .011 .006 .008 .007 034 .043
Tenter Lat .008 .010 .007 .011 .005 .004 017 .004
‘ (enter Long. |.030 .044 .012 .014 .010 .022 .008 .020
Lft Pwd Vet .033 .050 .041 .019 .011 .018 .033 .017
Rt Fwd Vt .020 .028 .040 .028 .014 .016 .030 .013
96 Center Vt .031 .036 .031 .00S .010 .011 024 .018
Center Lat .011 .012 .006 .011 - .003 .027 .002
Center lLong. |.035 .047 .020 .012 .014 .02 .012 .006
Lft Fwéd Vt .039 .058 .095 .045 .012 .00% .021 .014
Rt Fwd Vt .025 .64 .072 .036 .004 .002 .005 .012
98 Center Vt .025 .051 .079 .006 .006 .006 .013 .017
Center Lat .008 .007 .025 .004 .003 .003 .003 .002
Center Long, |.02¢ .049 .024 .008 .021 .017 .014 .005
Lft Fwa Vt .048 ,067 062 .026 .017 .019 .152 .,084
Rt Fwd Vt .032 .050 .043 .023 .008 .014 .114 .092
100 Center Vt .039 .058 .042 .010 .N04d .011 116 .092
Center Lat .018 .008 .026 .002 007  .004 012 .005
Center Long, |.032 .040 .043 .013 .015 .029 081 .039
Lft Fwd Vt .051 .080 .07 .033 .022 .025 .106 .092
Rt Fwd Vt .045 .060 .050 .039 .014 .017 .112 .083
102 Center Vt .070 .041 .049 .010 .017 .020 .104 .100
- Center Lat .007 .009 .019 .005 .004 .005 .031 .006
Lft Pwd Vt .012 .024 016 .021 .029 .050 .062 .049
Rt Pwd Vt .006 .010 .038 .026 .018 .03% .074 .053
104 Center Vt .010 .018 .020 .012 .023 .046 .050 .057
Center Lat .015 .008 .030 .007 .007 .003 .023 .006
Center long. |.030 .031 .064 .024 .06  .027 .052 .023 l
36




TABLE IV - Continued

200-Pound Platform - 30 Knots

Main Rotor Harmonic Vibration Level (tq)

Unidirectional Inertia Bar Orientation

Lateral Longitudinal
Main
Rotor One/Rev Eight/Rev One/Rev Eight/Rev
Speed Pickup
(8 rpm) Location Input Cutput Input Output |Input Output Input Output

Lft Fwd Vt .036 .048 .066 .056 .031 .049 .063 .046
Rt Fwd Vt 017 .033 .151 .051 .018 .032 .044 .054
106 Center Vt .030 .036 .079 .016 .020 .037 .025 .059
Center Lat .016 .014 .043 .020 .013 .009 .007 .006
Center Long. |.031 .031 .098 .027 .022 .031 .054 .014

200-Pound Platform - 120 Knots

Lft Pwd Vt .021 ,031 .012 .018 .009 .026 .022 .036
Rt Fwd Vt .013 .025 .049 .C1l9 .016 .035 .037 .036
96 Center Vt .016 .015 .021 .018 .014 .026 .029 .053
Center Lat .011 .006 .031 .008 .001 .009 .017 .008
Center long. {.021 .033 .05 .015 .011 .008 .045 .020

Lft Fwd Vt |.020 .n42 .018 .026 |.035 .043 .009 .012
Rt Fwd Vt .025 .049 .021 .028 [.048 .055 .018 .013
98 Center Vt .025 .047 .009 .008 }.039 .051 .014 .0l4
Center Lat [.004 .018 .029 .008 |.008 .008 .021 .00S
Center lLong, |.017 .029 .008 .007 .020_ .028 .022 .001

Lft Fwd Vt .015 .016 .030 .035 .033 .045 .012 .025
Rt Fwd Vt .023 ,020 .01t 019 .046 .060 .009 .023
100 Center Vt .012 .009 .017 .012 .032 .057 .003 .029
Canter Lat .004 .011 .009 .006 .009 .0l12 .012 .005
Center Long. {.022 .013 .036 .013 .028 .042 .022 .009

Lft Pwd Vt [.022 .025 .030 .012 [.038 .065 .042 .032
Rt Pwd Vt  [|.030 .34 .018 .002 |.054 .075 .019 .033
102  Center Vt  [.025 .03? .012 .008 [.043 .073 .021 .043
Center Lat [.G14 .012 .010 .002 (.004 .012 .027 .007
Center Long. |.015 .031  .031 .011 |.024 .042 _ .051 .018

Lft Pwd Vt .009 .010 .036 .008 [.076 .09 .019 .031
Rt Fwd Vt .027 .030 .016 .008 }J.05%1 .107 .008 .036
104 Center Vt .0l .022 .024 .00 |.079 .104 .008 .034
Center Lat [.010 .015 .019 .004 .017 .009 .013 .007
Center Long. [.019 .031 .047 .012 .031 .045 .032 .011

Lft Fwd Vt .022 .035 .054 .026 .022 .037 .049 .029
Rt Pwd Vt .036 .040 .056 .014 .044 052 .033 .045
106 Center Vt .021 .033 .043 .004 .032 .046 .031 .040
Center Lat .004 .00l .011 .007 .013 .012 .007 .007
Center Long. |.017 .030 .036 .00 .026 .040 .063 .010
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TABLE IV - Continued

200-Pound Platform With 3-Inch CG

Offset - 30 Knots

Main Rotor Harmonic Vibrat.on Level (th

Unidirectional Inertia Bar Orientation

Lateral Longitudinal
Main
Rotor One/Rev Eight/Rev One/Rev Eight/Rev
Speed Pickup
(8 rpm) Location Input Output Input Output {Input Output Input Output
Lft Fwd Vt .014 .015 .094 .0l6 .005 .025 096 .027
Rt Fwd Vt .006 .012 .031 .048 .012 .014 .047 .028
92 Center Vt .010 .015 061 .031 .014 .021 .084 .023
Center lat .008 .003 .058 .018 .005 .009% .047 .015
Center Long .}.009 .010 .037 .008 .021 .028 .025 .019
Lft Fwd Vt .012 .020 .070 .007 .018 .025 .052 .035
Rt Fwd Vt .010 .013 .036 .032 017 .022 024 .029
94 Center Vt .012 .017 .040 .023 .014 .025 .042 .023
Center Lat .004 .006 .018 .01l .006 .005 .029 .009
Center long .|.012 .017 .023 .01z [.019 .025 .033 .018
Lft Pwd Vt .004 .014 034 .007 .013 .028 .146 .075
Rt Fwd Vt .009 .010 .035 .011 .026 .026 115 .059
96 Center Vt .004 .012 .025 .004 .024 .030 .124 .055
Center lLat .008 .009 .012 .005 .012 .005 013 .007
Center Long .j.008 .012 .017 .004 .021 .028 .064 .034
Lft Pwd Vt .006 .003 .015 .004 .028 .057 .105 .049
Rt Pwd Vt .003 .001 .021 .0l0 034 .041 .063 .04¢
98 Center Vt .003 .004 .012 ,005 .029 .052 .089 .036
Center lat .002 .002 .008 .008 .005 .005 .022 .014
Center lLong .{.009 .010 .015 .007 .020 .023 .035 .021
Lft Pwd Vt .019 .030 .091 .009 .033 .062 .104 .069
Rt Pwd Vt .023 .026 .067 .026 .026 .036 .058 .055
100 Center Vt .019 .029 .072 .014 025 .050 .078 .054
Center Lat .006 .005 .029 .003 .007 .006 ,031 .009
Center Long .|.004 .009 .021 .01l0 .023 .028 .053 .033
Lft Fwd Vt .022 .038 119 .002 .021 .031 .057 .084
Rt Pwd Vt .023 .031 .045 ,016 015 .024 .076 .049
102 Center Vt .025 .033 .068 .027 .016 .031 .070 .065
Center lLat .006 .009 .023 .005 .011 .00% .02 .002
Center lLong .J.010 .015 .046 .018 .024 .038 061 .032
Lft Pwd VL .020 .029 .039 .009 .028 .040 045 .045
Rt Pwd Vt .017 .020 .005 .013 .018 .020 023 .031
104 Center Vt .015 .021 .014 .04 017 .024 .023 .042
Center Lat .006 .005 024 .007 .011 .008B .015 .008
Center Long .|/.007 .016 .032 .015 .029 .043 .043 ,010
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TABLE IV - Continued

200-Pound Platform With 3-Inch CG Offset - 20 Knots

Main Rotor Harmonic Vibration Level (%g)

Unidirectional Inertia Bar Orientation

Lateral Longitudinal
Main
Rotor One/Rev Eight/Rev One/Rev Eight ‘Rev
Speed Pickup
(8 rpm) Location Input Output Input Output|Input Output Input Output
Lft Fwd Vt .007 .01 .059 .020 .029 .053 .005 .031
Rt Fwd Vt .008 .005 .095 .040 .014 .023 017 .012
106 Center Vt .003 .003 .060 .007 .023 .030 .017 .021
Center Lat .006 .008 .025 .014 .007 .015 .016 .003
Center long.|.021 .012 .065 .021 .033 .046 .032 .008
200-Pound Platform With 3-Inch CG Offset - 120 Knots
Lft Fwd Vt .050 .059 .024 .022 .025 .042 .029 .058
Rt Fwd Vt .052 .052 .058 .013 .036 .046 .046 .028
96 Center Vt .043 .049 .030 .021 .025 .043 .021 .050
Center lLat .006 .005 .028 .003 .014 .004 .029 .008
Center Long.|{.022 .015 .066 .01l .024 .024 .056 .021
Lft Pwd Vt .012 .008 .009 .005 .028 .044 .043 .038
Rt Fwd Vt .020 .017 .056 .018 .039 .050 .051 .019
98 Center Vt .015 .013 .026 .020 .033 .047 .038 .040
Center lat .001 .008 .030 .005 .007 .010 .024 .008
Center Long.|.019 .03l 032 .013 .029 .038 .030 .018 |
Lft Fwd vVt .010 .014 .025 .004 .030 .04¢ .021 .040
Rt Fwd Vt .011 .009 .064 .022 ,038 .033 .010 .014
100 Center Vt .003 .006 .030 .026 .032 .037 .004 .032
Center Lat .009 .01l .028 .004 .002 .023 .040 .008
Center lonq.}.021 .017 .033 .00 .033 .061 046 .014
Lft Fwd Vt .018 .014 .095 .005 .052 .080 .026 .023
Rt Fwd Vt .012 .014 .034 .010 .071 .080 .016 .023
102 Center Vt .014 .020 .025 .006 .056 .082 .019 .018
Center lat .007 .016 .010 .004 .003 .007 .010 .008
Lft Fwd Vt .017 .030 .049 .011 .035 .065 021 .032
Rt Fwd Vt .022 .027 .061 .020 .040 .048 014 .020
104 Center Vt .017 .026 041 .008 .024 .046 .012 .027
Center Lat .007 .003 .008 .007 .007 .011 .019 .007
Center Long.(.009 .0l14 .038 .0095 .045 .071 .043 .011
Lft Fwd Vt .047 .068 033 .011 .013 .041 .063 .022
Rt Fwd Vt .046 .055 .051 .0l14 .025 .029 .048 .032
106 Center Vt .035 .052 .047 -.012 .016 .035 .042 .027
Center Lat .003 .005 .015 .002 .011 .002 .023 .008

—_____ Center Long.|

.006 .011 .04 .020 .025 .034 .059 .01l
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Figure 24. 120-Knot Four-Per-Rev Results of the 50-Pound
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Figures 27 through 37 show the four-per-rev results ob-
tained. Excellent reduction of vibration level was ob-
tained on all weight configurations of the platform. It

is of particular interest that the 50-pound platform had a
static deflection of only .031 inch, which for a conventional
system would be essentially in resonance at the four-per-rev
frequency of the UH-2 helicopter. Flight testing of the 50-
pound conventionally isolated platform, reported later in
this report, showed this to be true.

It is also seen that orientation of the three-dimensional
DAVI's did not affect the results obtained. The platform
with the unidirectional inertia bars of the three-dimensional
DAVI oriented laterally had lower vibration levels than when
oriented longitudinally. There are two major reasons for :
this discrepancy. Although the three-dimensional DAVI is
designed to have the isolated pivots on the elastic axis of

the springs, there is non-symmetry in the design. As seen

in Figure 13, when the unidirectional inertia bar is oriented

in the lateral direction, the 3prings are equally offset a
distance (a) from the pivot axes in the longitudinal direction.

As seen from Equations (1) and (2), there is a slight dis-
crepancy in antiresonant frequency.

It is also seen in Figure 13 that in the lateral direction,
there is no offset between the springs and the isolated
pivots, but that the non-isclated pivot is located a dis-
tance (r) from the springs and isolated pivot. As seen from
Equations (1) and (3), this also causes a slight discrepancy
in antiresonant frequency. Thus, orientation of this three-
dimensional DAVI can affect the results.

The effect of orientation of the three-dimensional DAVI was
especially noticeable in the 50-pound platform results. The -
reason for this is that although the antiresonant frequency

of the three-dimensional DAVI is not affected by weight of

the isolated platform, the natural frequencies of the system

are. For the 50-pound platform, the natural frequencies are

much closer to the antiresonant frequencies than for the $
higher weight platforms. This condition does lead to higher
vibration when there is a discrepancy in the antiresonant
frequencies. ]

Fiore Saelln o

Also higher vibration levels were obtained on the 50-pound
platform than on the heavier platforms. This is due to the
damping in the system from the friction in the rod-end type
bearings. However, excellent isolation was obtained at all !
platform weights. i
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COMPARISON OF THEORY AND TEST

Figures 38 through 45 show both the flight test and theo-
retical results. These results are reported in the form of
transmissibilities in which the output accelerations on the
platform were divided by the input accelerations to the
platform. Figures 38 through 41 show the flight test re-
sults for both the lateral and longitudinal orientation

of the DAVI. Figures 42 through 45 show the theoretical
results. Theoretical results were calculated using a
twelve-degree-of-freedom rigid body analysis which is re-
ported in Reference 3.

Correlation of the theoretical results with the flight test
results is only fair. One reason for discrepancies is that
the analysis is based upon the assumption of point attachment
between bodies, and orientation of the DAVI unidirectional
inertia bar in the longitudinal or lateral directions is not
considered. Therefore, any difference in antiresonant fre-
quency due to crientation of the DAVI cannot be evaluated.

Another reason for discrepancies is that hub forces and
moments are used as excitation functions in the theoretical
program. Since this is a rigid body prcgram, effective hub
forces and moments are used to only reasonably reproduce the
inputs to the isolated program. Precise definition of the
hub forces and moments that would reproduce the excitation
vibration levels and phases obtained in the flight tests was
not possible. Constant forces and moments were not used
versus rpm and therefore, the theory does not show an anti-
resonance even though the three-dimensional DAVI system is
tuned to 18.5 cps. Because of these assumptions in the
theoretical program, precise correlation cannot be obtained.
However, the theory is perfectly adequate in designing an
isolated program.
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CONVENTIONAL SYSTEM

CONVENTIONAL PLATFORM

Four weight configurations of the conventional platform
were flight tested: a 50-pound platform, a 150-pound
platform, a 200-pound platform, and a 200-pound platform
with a three-inch center of gravity offset. The platform
was essentially the same as the three-dimensional DAVI
platform, and the conventional system was obtained by re-
moving the inertia bar of the two-dimensional DAVI. The
two-dimensional DAVI platform results are reported later
in this report. The instrumentation and location used in
this phase are identical to those in the three-dimensional
DAVI flight test phase.

FLIGHT TEST CONDITIONS

The conventional platform was tested under steady-state
or level flight conditions and transient conditions. The
flight testing was conducted on Kaman UH-2B helicopter
BuNo 147204. Table V gives the conditions tested. These
were all tested for a helicopter gross weight of 8500
pounds.

FLIGHT TEST RESULTS

Figures 46 through 49 and Figures 50 through 53 show
typical oscillograph traces obtained in the level flight
and transient conditions, respectively. These figures of
the steady-state conditions show the results obtained on
the conventional platform at 30 knots and 100 percent rotor
rpm. It is seen that the 50-pound platform was essentially
in resonance and a large increase in vibration occurred.
Isolation was obtained on the 150-pound and 200-pound
platforms.

Figures 50 through 53 show the transient condition of
landing, since this is more critical than rotor engage-
ment. These traces show that no abnormal g level was
obtained.
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TABLE V. CONVENTIONAL ISOLATED PLATFORM
FLIGHT TEST CONDITIONS
Platform
Center of
Platform Gravity Main Rotor
Weight Offset Speed Airspeed

(1b) (in.) (% rpm) (kn)

50 0 92 to 102 30

50 0 92 to 102 120

50 0 100 Landing

50 0 0 to 100 Ground Rev-Up
150 0 92 to 102 30

150 0 92 to 102 120

150 0 100 Landing

150 0 0 to 100 Ground Rev-Up
200 0 92 to 102 30

200 0 92 to 102 120

200 0 100 Landing

200 0 0 to 100 Ground Rev-Up4
200 3 92 to 102 30

200 3 92 to 102 120

200 3 100 Landing

200 3 0 to 100 Ground Rev-Up
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A 48-point Fourier analysis was done on the test data to
obtain the magnitude of the predominant harmonics. This
analysis was done on all of the steady-state test conditions.
Table VI gives the frequencies of the predominant harmonics.

TABLE VI. FREQUENCY OF THE PREDOMINANT
HARMONICS OF THE UH-2B HELICOPTER
in Rotor Frequency of Predominant Harmonic
Speed (Cycles Per Second)
(Percent
RPM) 1 4 8 : 12 16
92 4.24 16.96 33.92 50.88 67.84
94 4.33 17.32 34.64 51.96 69.28
96 4.43 17.72 35.44 53.16 70.88
98 4.52 18.08 36.16 54.24 72.32
100 4.61 18.44 36.88 55.32 73.70
102 4.70 18.80 37.60 56.40 75.20

The Fourier analysis results are given in Table VII for the
one-per-rev and eight-per-rev and in Figures 54 through 61
for the four-per-rev.

It is seen from Table VII that the one-per-rev vibration
levels in most cases are of very low magnitude. The one-
per-rev vibration levels were greater on the platform than
the input to the platform. This is to be expected, since
the natural frequency of all the weight configurations were
above one-per-rev, and amplification should occur. However,
none of the one-per-rev vibration levels on the platform
were high. In most cases, the eight-per-rev level inputs
were low, and for the eight-per-rev, good attenuation was
obtained on the platform.
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TABLE VII. PREDOMINANT VIBRATION LEVELS
ON THE CONVENTIONAL PLATFORM
50-Pound Platform - 30 Knots
Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - ig)
Speed Pickup One-Per-Rev Eight-Per-Rev
($ RPM) Location Input Output Input Output
Lft Fwd Vt .044 .034 .080 .106
Rt Fwd Vt .042 .092 .030 .091
94 Center Vt .039 .048 .055 .070
Center Lat .033 .005 .007 .012
Center Long. .009 .073 .028 .122
Lft Fwd Vt . 055 .031 .076 .016
Rt Fwd Vt .021 .028 .042 .032
96 Center Vt . 050 .044 .038 .019
Center Lat .004 .006 .029 .017
Center Long. .004 .004 .008 .012
Lft Fwd Vt .031 .038 .070 .013
Rt Fwd Vt .026 .034 .057 .006
98 Center Vt .028 .034 .068 .002
Center Lat .003 .006 .030 .004
Cer.ter Long. .003 .019 .009 .009
; Lft Fwd Vt .021 . 025 .058 .006
Rt Fwd Vit .023 .034 .016 .042
100 Center Vt .031 .029 .016 .059
Center Lat .005 .008 .029 .003
Center Long. .008 .002 .013 .011
Lft Fwd Vt .029 .034 .015 .006
Rt Fwd Vt .025 .032 .020 .002
102 Center Vt ~ .028 .036 .014 .013
Center Lat .003 .002 .008 .003
Center Long. .008  .013 .016 .002
50~Pound Platform - 120 Knots
Lft Fwd Vt .077 .057 .097 .020
Rt Fwd Vt .032 .052 .037 .022
94 Center Vt .046 .060 .027 .048
Center Lat . 005 012 .022 .008
Center Long. .014 .015 .049 .017
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TABLE VII - Continued

50-Pound Platform - 120 Kunots

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - *q)
Speed Pickup One-Per-Rev Eight-Per-Rev
(3 RPM) Location Input Output Input Output
Lft Fwd Vt .019 .021 . 055 .028
Rt Fwd Vt .017 .017 .037 .019
96 Center Vt .013 .026 .029 .015
Center Lat .002 .010 .025 .032
Center Long. .016 .020 .021 . 007
Lft Fwd Vt .008 .011 .038 .026
Rt Fwd Vt .012 .013 .026 .024
98 Center Vt .011 .025 .032 .032
Center Lat .009 .016 .044 .020
Center Long. .011 .021 .036 .010
Lft Fwd Vt .036 .039 .029 .029
Rt Fwd Vt .030 .042 .018 .013
100 Center Vt .035 .032 .008 .025
Center Lat .008 - 017 .031 .024
Center Long. .018 .020 .015 .006
Lft Fwd Vt .019 .025 .038 .018
Rt Fwd Vt .024 .032 .018 .016
102 Center Vt .026 .038 .032 .010
Center Lat .002 .008 .031 .014
Center Long. .014 .014 .023 .00¢
150-Pound Platform - 30 Knots
Lft Fwd Vt .029 .038 .030 .003
Rt Fwd Vt .029 .035 .024 .005
92 Center Vt .029 .037 .031 .001
Center Lat .001 .003 .003 .001
Center Long. .008 .008 .010 . 005
Lft Fwd Vt .023 .033 .040 .008
Rt Fwd Vt .021 .030 .026 .008
94 Center Vt .022 .027 .044 .006
Center Lat .003 .004 .012 . 007
Center Long. .007 .007 .014 .003

86




TABLE VII - Continued

150-Pound Platform - 30 Knots

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - qg)
Speed Pickup One-Per-Rev Eight-Pexr-Rev
(¥ RPM) Location Input Output Input Output
Lft Fwd Vt .010 .014 .019 .004
Rt Fwd Vt .009 .018 .021 .005
96 Center Vt .012 .017 .021 .003 .
Center Lat .001 .003 .012 .003
Center Long. .010 .008 .007 .004
Lft Fwd Vt .024 .032 .030 .009
Rt Fwd Vt .023 .030 .038 .013
98 Center Vt .027 .033 .046 .004
Center T2t .003 .002 .014 .001
Center Long. .006 .009 .012 .005
Lft Fwd Vt .033 .040 .041 .016
Rt Fwd Vt .028 .041 .045 .009
100 Center Vt .0%2 .043 .053 .004
Center Lat .002 .003 .017 .002
Center Long. .008 .006 .027 .001
Lft Fwd Vt .039 .055 .043 .009
Rt Fwd Vt .037 .054 .042 .010
102 Center Vt .039 .053 .044 .005
Center Lat .004 .005 .004 .004
Center Long. .008 007 047 003
150-Pound Platform - 120 Knots
Lft Fwd VvVt .010 .012 .039 .023
Rt Fwd Vt .012 .016 .037 .011
92 Center Vt .010 .008 .021 .011
Center Lat . 004 .010 .050 .018
Center Long. .006 .011 .058 .008
Lft Fwd Vt .031 .040 .032 .010
Rt Fwd Vt .031 .041 .037 .007
94 Center Vt .034 .043 ,031 .006
Center Lat .009 .012 .022 .012
Center Long. . 005 .009 .031 .006
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TABLE VII - Continued

150-Pound Platform - 120 Knots

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - *q)
Speed Pickup One-Per-Rev Eight-Per-Rev
(3 RPM) Location Input Output Input Output
Lft Fwd Vt .013 .012 .033 .004
Rt Fwd Vt .010 .010 .030 .011
96 Center Vt .012 .013 .034 .006
Center Long. .005 .005 .041 .008
Lft Fwd Vt .033 .041 .030 .007
Rt Fwd Vt .034 .046 .040 .012
98 Center Vt .032 .035 .026 .006
Center Lat .008 .005 .043 .013
Lft Fwd Vt .018 .015 .026 .009
Rt Fwd Vt .021 .023 .025 .006
100 Center Vt .022 .027 .026 .008
Center Lat .003 .007 .019 .004
Center Long. .008 .008 .017 .003
Lft Fwd Vt .017 .023 .025 .006
Rt Fwd Vt .018 .025 .004 .011
102 Center Vt .018 .022 .01e .003
Center Lat .004 .002 .024 .003
Center Long. .014 .027 .010 .003
200-Pound Platform - 30 Knots
Lft Fwd Vt .026 .046 .026 .011
Rt Fwd Vt .023 .043 .026 .009
92 Center Vt .025 .041 .033 .007
Center Lat .003 .001 .031 .008
Center Long. .009 .010 .019 .002
Lft Fwd Vt .033 . 045 .066 .016
Rt Fwd Vt .032 . 045 .044 .013
94 Center Vt .038 . 051 .072 .005
Center Lat .002 .005 .007 .005
Center Long. .012 .011 .015 .005
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TABLE

VII - Continued

200-Pound Platform - 30 Knots

Main Main Rotor Harmonic Vibration Level
Rotor {Acceleration - *g)
Speed Pickup | One-Per-Rev Eight-Per-Rev
(¢ RPM)  Location Input Output Input  Output
Lft Fwd Vt .031 .041 .025 .011
Rt Fwd Vt .028 .039 .020 .004
96 Center Vt .028 .039 .030 .005
Center Lat .001 . 005 .016 .007
Center Long. .009 .017 .015 .003
LEt Fwd Vt .027 .051 .034 .010
Rt Fwd Vt .021 .049 .041 .010
98 Center Vt .024 .056 .045 .002
Center Lat .004 .002 .022 .003
Lft Fwd Vt .034. .043 .027 .013
‘ Rt Fwd Vt .030 .044 .024 .011
100 Center Vt .035 . 045 .036 .003
Center Lat .002 .008 .021 .001
Center Long. .010 .024 .013 .004
Lft Fwd Vt .025 . 049 .092 .027
Rt Fwd Vt .020 . 048 .064 .022
102 Center Vt .021 . 051 .090 .007
Center Lat .006 .011 .025 .001
Center Long. .008 .010 .031 .003
1
200-Pound Platform - 120 Knots
Lft Fwd Vt .010 .028 .015 .015
Rt Fwd Vt .011 .028 .033 .004
92 Center Vt .009 .033 .022 .001
Center lat .013 .010 .029 .010
Center Long. .012 .034 .039 .006
Lft Fwd Vt .023 .037 .021 .011
Rt Fwd Vt .017 . 041 .044 .009
94 Center Vt .023 .041 .038 .001
Center Lat .004 .032 .019 .018
Center Long. .008 .013 .043 .003
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TABLE VII - Continued

200-Pound Platform - 120 Knots

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - q)
Speed Pickup One-Per-Rev Eight-Per-Rev
(3 RPM) Location Input Output Input Output
Lft Fwd Vt .010 .016 .033 .017
Rt Fwd Vt .007 .015 .054 .016
96 Center Vt .007 .015 .044 .001
Center Lat . 005 .021 .040 .013
Center Long. .010 .021 .036 .002
Lft Fwd Vt .015 .013 .033 .014
Pt Pwd Vt .015 .018 .031 .007
98 Center Vt .015 .010 .025 .005
Center Lat .002 .020 .040 .005
Center Long. .013 .024 .043 .002
Lft Fwd Vt .020 .010 .017 .014
Rt Fwd Vt .019 .014 .013 .007
100 Center Vt .021 .016 . 016 .003
Center Lat .010 .059 .032 .015
Center Long. .015 . 005 .018 .003
Lft Fwd Vt .038 .064 .032 .008
Rt Fwd Vt .033 .070 .027 .014
102 Center Vt .031 .076 .021 . 005
Center Lat .006 .028 .048 .008
Center Long. .007 .028 .023 .004

200-Pound Platform With 3-Inch CG Offset - 30 Knots

Lft Fwd Vt -027 - 028 . 045 .011
Rt Fwd Vt .024 .023 .035 .003
100 Center Vt .026 .028 .037 .004
Center Lat .001 .020 . 009 .003
Center Long. .004 .008 .014 .002
Lft Fwd Vt .042 .062 .008 . 005
Rt Fwd Vt .035 . 056 .013 .004
102 Center Vvt .038 .060 .008 . 005
Center Lat .002 .026 .010 .002
Center Long. .006 .007 .005 .003
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TABLE VII - Continued
200-Pound Platform With 3-Inch CG Offset - 120 Knots
Main Main Rotor Harmonic Vibration Level
Rotor _ _(Acceleration - *g)
Speed Pickup One-Per-Rev Eight-Per-Rev
(8 RPM) Location Input Output Input Output
Lft Fwd Vt .033 .052 .025 .006
Rt Fwd Vt .033 .044 .044 .014
92 Center Vt .032 .046 .029 .006
Center Lat .006 .013 .029 .006
Center Long. .007 .020 .062 .007
Lft Fwd Vt .021 .031 .009 .003
Rt Fwd Vt .026 .040 .035 .014
| 94 Center Vt .029 .034 .019 .005
Center Lat .004 .011 .035 .007
Center Long. .010 .013 .034 . 009
| Lft Fwd Vt .025 .060 .024 .012
Rt Fwd Vt .025 .052 .032 .012
96 Center Vt .022 .056 .025 .005 -
Center Lat .003 .012 .029 .004
; Center Long. .007 .013 .023 .003
‘ Lft Fwd Vt .0z4 .044 .030 .008
b Rt Fwd Vt .016 .029 .027 .007
‘ 98 Center Vt .026 .045 .029 .003
‘ Center Lat .007 .053 .023 .005
Center Long. .008 .030 .033 .006
Lft Fwd Vt .019 .086 .031 .002
Rt Fwd Vt .016 .058 .027 .004
| 100 Center Vt .017 .083 .027 .007
Lo Center Lat .002 .032 .035 .006
; Center Long. .07 .036 .035 .002
Lft Fwd Vt .019 .079 .026 .021
Rt Fwd Vt .007 .064 .011 .008
102 Center Vt .009 .068 .011 .012
Center Lat .003 .030 .03] .009
? Center Long. .010 .032 .005 .003
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Figures 54 through 61 show the four-per-rev results obtained.
The 50-pound platform was essentially in resonance, and large
amplification of the vibration input was obtained on the plat-
form. The 150- and the 200-pound platforms had good isolation.

COMPARISON OF THE THREE-DIMENSIONAL AND
CONVENTIONAL PLATFORMS

Table VIII shows a comparison of the four-per-rev results
obtained on the three-dimensional DAVI and conventional
platforms. These results are reported in the form of trans-
missibilities in which the output accelerations on the plat-
form were divided by the input acceleration to the platform.
These results are for the 30 knot flight condition and at
essentially the same four-per-rev frequency, which is 98
percent rotor rpm for the three-dimensional DAVI platform
and 100 percent rotor rpm for the conventional platform.

It is seen from this table that the largest discrepancy
occurred in the 50-pound platform. For the 50-pound three-
dimensional DAVI platform, good isolation was obtained,
whereas the 50-pound conventional platform was near resonance
and amplification occurred. For the other weight configura-
tions of the three-dimensional DAVI and conventional plat-
forms, excellent isolation was obtained. However, in most
cases, the three-dimensional DAVI platform had better
isolation and was less susceptible to weight change than

the conventional platforms.

It is also seen when comparing the three-dimensional DAVI

platform (Figures 22 through 37) results with the conven-

tional platform (Figures 54 through 61) results, that the

three-dimensional DAVI platform was less susceptible to an
rpm and cg change than the conventional platform.
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UNIDIRECTIONAL DAVI

UNIDIRECTIONAL DAVI PLATFORM

Several preliminary tests were done to determine the best
platform configuration. The first test was done on the
50-pound platform for two center of gravity positions of
the platform as shown in Figure 62.

s |

—4!%

et}

.
+

Figure 62, Center of Gravity Position of the
Unidirectional Platform.

The preliminary test results indicated that the platform
with the reduced height of the center of gravity above the
pivots had the minimum vibration level, and this configura-
tion was then used for all of the remaining tests.

Preliminary tests were then done on the 150-pound platform
to determine the best orientation of the unidirectional
DAVI's. Figure 67 shows the orientations tried.

éD-O-C

% 7| o
o §| KX X oo o

(a) FIRST (b) SECOND (c) THIRD
ORIENTATION ORIENTATION ORIENTATION

Figure 63. Orientation of the Unidirectional DAVI's.
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However, the various orientations of the unidirectional
DAVI did not have much effect on the vibration level, and
the third orientation of the unidirectional DAVI's was
used for all the remaining testing.

Figure 64 shows a schematic of the final unidirectional
DAVI platform and the location of the ten accelerometers.

Four different weights of the unidirectional DAVI platform
were tested: 50 pounds, 150 pounds, 200 pounds, and 200
pounds with a three-inch center of gravity offset in the
lateral direction.

The unidirectional DAVI models used in this program were the
same ones used in the USAAVLABS program unédzr Contract

DA 44-177-AMC-391(T). Figure 65 shows a schematic of this
unidirectional DAVI model.

FLIGHT TEST CONDITIONS

The uvnidirectional DAVI Alpha isolated platform was tested
unde; steady-state or level flight conditions and maneuver
conditions. Table IX gives the level flight conditions tested.

TABLE IX. UNIDIRECTIONAL DAVI ISOLATED PLATFORM
LEVEL FLIGHT TEST CONDYTIONS
Platform Platform Helicopter Main Rotor 4

Weight CG Offset Gross Weight Speed Airspeed
(1b) (1b) (1b) (%8 RPM) (kn)
50 0 8,500 92 0 to Vy
50 0 8,500 100 0 to Vy
50 0 8,500 92 to 102 30
50 0 8,500 92 to 102 120
150 0 8,500 92 0 to Vy
150 0 8,500 100 0 to Vy
150 0 8,500 92 to 10" 30
150 0 8,500 92 to 102 120
200 0 8,500 92 0 to Vg
200 0 8,500 100 0 to Vy
200 0 8,500 92 to 102 30
200 0 8,500 92 to 102 120
200 3 8,500 92 0 to Vy
200 3 8,500 92 to 102 30
200 3 8,500 92 to 102 120
200 3 10,000 92 0 to Vy
200* 3 10,000 100 0 to Vy
200 3 10,000 92 to 102 30
200 8 10,000 92 to 102 105

#This condition was repeated with an out-of-track condition

on the main rotor.
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Figure 64. Schematic of the Unidirectional
DAVI Platform.
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ANN

Figure 65. Schematic of the Unidirectional
DAVI Model.
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Table X gives the maneuver conditions tested on the uni-
directional DAVI Alpha platform. These tests were conducted
on the 200-pound with a three-inch center of gravity offset
platform.

TABLE X. UNIDIRECTIONAL DAVI ISOLATED PLATFORM
MANEUVER FLIGHT TEST CONDITIONS
Helicopter Main Rotor
Gross Weight Speed Airspeed

Maneuver (1lb) (8 RPM) (kn)
30° bank turn 8500 100 40
30° bank turn 8500 100 100
45° bank turn 8500 100 40
45° bank turn 8500 100 100
2.0 g pullout 8500 100 40
2.0 g pullout 8500 100 100
0.5 g pushover 8500 100 40
0.5 g pushover 8500 100 100
Climb at NRP 8500 100 40
Climb at NRP 8500 100 80
Climb at MRP 8500 100 40
Climb at MRP 8500 100 80
Descent at NRP 8500 100 40
Descent at NRP 8500 100 80
Descent at MRP 8500 100 40
Descent at MRP 8500 100 80
Autorotation 8500 100 60
Landing flare 8500 100 60-0
Hard landings to

handbook limit 8500 100 0
Rotor engagement 8500 0-100 Ground

FLIGHT TEST RESULTS

Figures 66 through 69 show typical oscillograph traces ob-
tained in the level flight conditions on the unidirectional
DAVI platform for all weight configurations at 30 knots and
at 100 percent rotor rpm. At this rotor speed, the pre-
dominant four-per-rev excitation most nearly coincides with
the tuned antiresonant frequency of the DAVI. For the 50-
pound platform, a reduction of vibration was obtained.
However, for the other weight configurations, the results

are poor.

Figures 70 and 71 show typical oscillograph traces obtgined
in the transient conditions. No high g level was obtained
for these maneuvers.
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A 48-point Fourier analysis was done on the test data to
obtain the magnitude of the predominant harmonics. This
analysis was done on the test condition that included the
rpm sweep from 92 percent to 102 percent of the main rotor
at 30 and 120 knots. Table VI gives the frequencies of
the predominant harmonics.

The Fourier analysis results are given in Table XI for the
one-per-rev and eight-per-rev, and in Figures 72 through 81
for the four-per-rev.

It is seen from Table XI that the one-per-rev vibration
levels in most cases are of very low magnitude. In com-
paring the inputs to the isolated platform with the outputs
on the isolated platform, the results are as expected.
There is an increase in the one-per-rev vibration level on
the isolated platform. However, this increase in vibration
level is a minimum. In most cases there is a reduction of
eight-per-rev vibration levels on the platform, which is to
be expected.

Figures 72 through 31 show the four-per-rev results obtained.
Excellent reductior of vibration level was obtained on the
unidirectional DAV 50-pound platform. However, the results
obtained on the other weight configurations of the uni-
directional platforn were poor, and in many cases, amplifica-
tion of the vibration input to the platform occurred. The
primary reason for these poor results is that the uni-
directional DAVI platform was designed to isolate in the
vertical direction only and is essentially rigid in the
lateral and longitudinal directions. However, as seen from
the lateral and longitudinal inputs in Fiqures 66 through 69,
the platform wns subject to a complex input and not just
vertical inputs. This complex input did cause rotation of
the platform, and poor vibration characteristics were
obtained.
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TABLE XI.

PREDOMINANT VIBRATION LEVELS ON
THE UNIDIRECTIONAL DAVI FLATFORM

50-Pound Platform - 30 Knots

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - Xg)
Speed Pickup 1
(3 RPM) Location [Input Output Input  Output
Fwd Rt .020 .013 .099 .037
92 Fwd Left .008 .013 .060 .031
Aft Left .020 .023 .073 .017
Aft Rt .018 .013 .098 .044
Fwd Rt .011 .033 .106 .038
94 Fwd Left .011 .015 .059 .030
Aft Left .020 .015 .080 .024
Aft Rt meplil 017 .104 .043
Fwd Rt .027 .028 .105 061
96 Fwd Left .016 .019 .081 .032
Aft Left .018 022 .102 .047
Aft Rt .022 .022 122 .053
Fwd Rt .016 .018 .161 .019
98 Fwd Left .016 .008 .090 .038
Aft Left .005 .008 . 043 . 045
Aft Rt .023 024 .108 .097
Fwd Rt .015 .028 .071 .011
100 Fwd Left .014 .034 .058 .029
Aft Left .021 .022 .038 .032
Aft Rt .023 .023 .041 .036
Pwd Rt . 046 .026 111 .025
wd Left .033 .031 .068 .043
102 Aft Left .020 .033 .042 .048
Aft Rt .044 .045 .054 .056
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TABLE XI - Continued

50-Pound Platform - 120 Knots

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - *qg)
Speed Pickup 1 _
(8 RPM) Location Input Output Input Output
Fwd Rt .028 .031 .093 .004
92 Pwd Left .041 . 041 .097 .007
Aft Left .036 .044 .053 .031
Aft Rt .033 .039 . 045 .D35
Fwd Rt .034 .032 .103 .017
94 Fwd Left .025 .025 .102 .013
Aft Left . 027 .033 .044 . 037
Aft Rt .014 .025 .067 .055
#*wd Rt .026 .023 .104 .026
96 Fwd Left .030 .017 .132 .009
Aft Left .020 .020 . 068 .065
Aft Rt .027 .023 . 058 .066
Fwd Rt .043 .045 .116 .028
98 Fwd Left .017 .022 151 .021
Aft Left .017 .031 . 055 .080
Aft Rt .026 .032 .052 .094
Pwd Rt .011 .024 .110 .044
100 Pwd lLeft .010 .020 s 122 .020
Aft Left .010 .020 . 053 .078
Aft Rt .007 .012 . 042 .039
Fwd Rt .037 .047 .099 .087
102 Fwd Left .022 .022 . 094 .020
Aft Left .021 .031 . 066 .120
Aft Rt .028 025 036 .127
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TABLE XI - Continued

150-Pound Platform - 30 Knots

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - *q)
Speed Pickup 1 . 8
(2 RPM) Location Input Output Input  Output
Fwd Rt .009 .012 .039  .046
92 Fwd Left .008 .008 .161 .049
Aft Left .012 .008 .089  .036
Aft RL .016 .015 .066 .024
Fwd Rt .017 .014 .023 .034
94 Fwd Left .013 .010 .114 . 043
Aft Left .010 .010 .049 .018
AfE Bt .011 .019 .029  .019
Fud Rt .016 .015 .025 .049
ot Fud Left .013 .024 .148  .028
Aft left .013 .022 .090 .026
Aft Rt .018 .022 .068 .010
Fwd Rt .022 .029 .013 .077
Fwd Left .023 .025 .125 .029
98 Aft Left .023 .027 .054 - .012
Aft Rt .023 .030 .042  .013
Fwd Rt .017 .020 .045 .039
100 Fwd Left .017 .021 .065 .010
Aft reft .011 .020 .057 .042
Aft Rt .018 021 .025 .007
Fwd Rt .018 .033 111 .037
102 Fwd Left .017 .023 .130. .026
Aft Left .032 .020 .154 . 069
Aft Rt .024 .034 .148 1025
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TABLE XI - Continued

150-Pound Platform - 120 Knots

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - *g)
Speed Pickup 1 8
(8 RPM) Location Input Input  Output
Fwd Rt .015 . 047 .015
92 Fwd Left .023 .025 .014
Aft Left .012 .017 .008
Aft Rt . 010 .024 .011
Fwd Rt .025 .N53 .052
94 Fwd Left .031 .124 .053
Aft Left .027 .036 .020
Aft Rt .012 . 015 .016
Fwd Rt .051 . 027 .064
96 Fwd Left .043 .120 . 040
Aft Left . 041 .015 .039
Aft Rt .038 .025 .024
Fwd Rt .034 .023 ,068
98 Fwd Left .033 .102 .038
Aft Left .040 .043 D27
Aft Rt . 015 .020 .022
Fwd Rt .029 . 015 .039
100 Fwd Left .020 .022 .009
Aft Left .029 .015 .012
Aft Rt .023 .012 .032
Fwd Rt .027 . 040 .023
102 Fwd Left .025 .053 .020
Aft Left .025 .028 .006
Aft Rt .031 . 041 . 014

109



TABLE XI - Continued_

200~-Pound Platform - 30 Knots

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - *g)
Speed Pickup L 1 8
(3 RPM) Location Input Output Input Output
Fwd Rt .014 .015 .070 .022
92. Fwd Left .009 . 015 .076 .015
Aft Left .008 .014 .090 - .023
Aft Rt .020 . 015 .079 .010
Fwd Rt .023 .031 .044 .029
94 Fwd Left .022 .026 114 .023
Aft Left .016 .024 091 .018
Aft Rt .030 .032 .060 .055
Fwd Rt .010 .027 .023 .026
96 Fwd Left .017 .019 .090 .029
Aft Left .014 .026 < 973 .007
Aft Rt .019 .024 .056 .007
Fwd Rt .022 .026 . 040 .036
08 Fwd Left .012 -016 077 .016
Aft left .014 .015 . 054 .011
Aft Rt .014 .020 .068 .016
Fwd Rt .027 .047 .028 .025
100 Fwd Left .024 .036 .068 .007
Aft Left . 028 .038 .071 .018
Aft Rt .030 .044 .059 .013
Fwd Rt .018 .040 .048 .013
Fwd Left .022 .029 .068 .019
102 Fwd Left .026 .025 .058  .025
Aft Rt .018 .039 .059 .011
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TABLE XI - Continued

200-Pound Platform - 120 Knots

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - *gq)
Speed Pickup 1 8
(8 RPM) Location Input Output Input  Output
Fwd Rt .038 . 059 .039 .043
92 Fwd Left .038 .048 .044 .044
Aft Left .039 .044 .015 .022
Aft Rt .038 .049 .018 .009
Fwd Rt .023 .032 .018 .037
94 Fwd Left .031 .056 .070 .050
Aft Left .027 .052 .042 .009
Aft Rt .017 .033 .020 .008
Fwd Rt .015 .018 .017 .050
. Fwd Left .020 .007 .072 .045
Aft Left .015 .011 .039 .012
Aft Rt .020 .021 .016 .002
Pwd Rt .020 . 015 .031 .042
98 Fwd Left .023 .002 .071 .041
Aft Left .024 .008 .019 .024
Aft Rt .020 .011 .018 .009
Fwd Rt . 035 .040 .014 .012
100 Fwd Left .038 .058 .014 .023
Aft Left +036 .061 .019 .009
Aft Rt .031 .044 .023 .015
Fwd Rt .034 .043 .029 .036
102 Fwd Left .044 .075 . 055 .043
Aft Left .039 .077 .033 .031
Aft Rt .032 .034 .030 .024
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TABLE XI - Continued

200-Pound Platform With Offset CG - 30 Knots

Main Kﬁain Rotor Harmonic Vibration Level
Rotor (Acceleration - 1g)
Speed Pickup 1
(% RPM) Location Input Output Input  Output
Fwd Rt .018 .029 011 .036
92 Fwd Left .024 .049 .067 .022
Aft Left .019 .032 . 045 .010
Aft Rt .022 .022 .034 .006
Fwd Rt .023 .024 .071 .038
94 Fwd Left .030 . 045 .104 .013
Aft Left .020 .036 .095 .014
Aft Rt .027 .026 .079 .014
Fwd Rt .008 .018 .084 .055
96 Fwd Left .016 .019 .145 .015
Aft Left .012 .014 .123 «028
Aft Rt .019 .021 .104 .009
Fwd Rt .010 .024 .045 .045
08 Fwd Left .015 . 059 .102 .016
Aft Left .021 Rl 077 .021
Aft Rt .009 .022 .072 .009
Pwd Rt .020 .018 051  .012
100 Pwd Laft .008 .046 041 .010
Aft Left .017 .054 .054 .018
Aft Rt .009 .031 .052 .003
Fwd Rt .024 .021 .078 .090
102 Fwd Left .018 .032 ol 7.7 = .040
Aft Left .022 .034 .118 .044
Aft Rt .019 .019 .136 041
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TABLE XI - Coﬁtinued

200-Pound Platform With Offset CG - 120 Knots

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - *g)
Speed Pickup 1 8
(% RPM) Location Input Output Input Output
Fwd Rt .016 .022 .019 .036
92 Fwd Left .019 .016 .056 .020
Aft Left .014 .016 .036 .003
Aft Rt . 010 .029 .019 .008
Fwd Rt .036 .Q49 .023 .028
94 Fwd Left . 046 . 065 . 040 .041
Aft Left .043 .073 .035 .008
Aft Rt .036 .057 .009 . 009
Fwd Rt .018 .031 .051 .059
36 Pwd Left .032 .039 .083 .032
Aft Left .028 .043 .053 . 006
Aft Rt .024 .030 .042 .010
Fwd Rt .041 .045 .017 .043
53 Fwd Left .032 .068 .062 .034
Aft Left .036 071 .020 .019
Aft Rt .023 .044 .023 .016
Fwd Rt .060 .076 .016 . 040
100 Fwd Left . 065 .087 .070 . 027
Aft Left .063 .096 .029 .018
Aft Rt . 063 .079 .018 .020
Fwd Rt . 047 . 035 . 028 . 041
103 Fwd Left .035 .034 .034 .020
Aft Left .039 . 051 .022 .020
Aft Rt .030 .048 . 028 . 023
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- TABLE XI - Continued
200-Pound Platform With Offset CG - 30 Knots*
Main Main Rotor HYarmonic Vibration Level
Rotor (Acceleration - 1g)
Speed Pickup 1
(3 RPM) Location Input Output Input Output
Fwd Rt .020 .025 .048 .039
Aft Left .021 .021 077 .013
Aft Rt .021 .027 .058 .015
Fwd Rt .020 .018 .069 .007
94 Fwd Left .016 .022 .075 .014
Aft Left .021 .018 .098 .006
Aft Rt .022 .022 .069 .012
Pwd Rt .029 .019 .068 .042
96 Fwd Left .021 .019 121 .019
Aft Left .029 .028 .092 .003
Aft Rt .021 .018 .079 .007
Fwd Rt .030 .027 .078 .026
08 Fwd Left 021 . 056 .089 .017
Aft Left 022 .069 .086 .025
Aft Rt .017 .044 .088 .009
Fwd Rt .033 .010 .094 .02€
100 Fwd Left .001 .030 .101 .026
Aft lLeft .016 .020 .103 .022
Aft Rt .014 .014 .082 .007
Fwd Rt .006 .018 .081 .042
102 Fwd Left .012 .011 d122 - .019
Aft lLeft .006 .012 .108 .033
Aft Rt .016 .012 .111 017 1
*Overload Gross Weight
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TABLE XI - Continued

200--Pound Platform With Offset CG - 105 Knots*

Main Main Rotor Harmonic Vibration Level
Rotor (Acceleration - *g)
Speed Pickup 1 8 .
(% RPM) Location Input Output Input  Output
Fwd Rt .031 .039 .039 .028
92 Fwd Left 029 .059 .071 .015
Aft Left .02% . 056 .084 .019
Aft Rt .023 .028 .061 .019
Fwd Rt .016 .018 .021 .017
94 Fwd Left .01 .029 .069 .008
Aft Left .010 .028 .063 .019
Aft Rt .016 .022 .051 011
Fwd Rt .042 .037 .071 022
96 Fwd Left .027 .081 .078 .007
Aft Left .043 .092 .088 .018
Aft Rt .033 .050 .085 .005
Fwd Rt .010 .007 .053 .030
98 Fwd Left .020 . 046 .089 .018
Aft lLeft .014 .037 . 085 .020
Aft Rt .008 .009 . 060 043
Fwd Rt .039 . 031 .071 .009
100 Fwd Left .031 .047 .068  .017
Aft Left .029 . 055 .067 .019
Aft Rt .033 .033 .073 .032
Fwd Rt .015 .009 .027 .019
10 Fwd Left .015 .027 .074 .011
2 Aft Left .021 .029 .064  .032
Aft Rt .004 .016 .051 .004

*Overload Gross Weight
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COMPARISON OF THEORY AND TEST

Figures 82 through 85 show the flight test and theoretical
results. These results are reported in the form of trans-
missibility in which the output accelerations on the plat-
foxm were divided by the input accelerations to the platform.

The theoretical results were calculated using a twelve-
degree-of-freedom rigid body analysis which is reported in
Reference 3. 1In this analysis, effective hub forces and
moments were used to reasonably reproduce the inputs to the
isolated platform.

Reasonable agreement between theory and test was obtained.
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TWO-DIMENSIONAL DAVI

TWO-DIMENSIONAL DAVI PLATFORM

Three two-dimensional DAVI pivot configurations were tested.
The pivot configurations were rubber pivots, rod end bearing
pivots, and Bendix flexural pivots. Figure 86 shows a
schematic of the two-dimensional DAVI with rod end bearing
pivots. In the two-dimensional DAVI, the inertia bar acts
in the vertical and horizontal directions, therefore, the
spring system is designed to have the same spring rate in
the horizontal as in the vertical direction.

For each of the pivot configurations, four weight configura-
tions of the two-dimensional DAVI platform were tested: a
50-pound, a 150-pound, a 200-pound, and a 2(0-pound with a
three-inch center of gravity offset platform. Figure 87(a)
shows the orientation of the two-dimensional DAVI platform
as installed in the UH-2 helicopter. The two-dimensional
DAVI inertia bar was oriented in the lateral direction and
the pivots were offset from the spring in the lateral di-
rection. This orientation of the two-dimensional DAVI
inertia bar results in isolation in the vertical and longi-
tudinal directions. This orientation of the two-dimensional
DAVI inertia bar resulted from an analysis made on a twelve-
degree-of-freedom rigid body program. This analysis, done
for the 120-knot case, showed that the DAVI's should be
oriented to give inertia bar action in the vertical and
longitudinal directions. The system is essentially rigid

in the lateral directions. 211 of the pivot and weight
configurations of the two-dimensional DAVI platform were
tested with this orientation.

Because of the poor results obtained on the two-dimensional
DAVI platform, the two-dimensional DAVI was modified. This
modification is shown in Figure 87(b); the two-dimensional
DAVI inertia bar remained oriented in the lateral direction,
but the pivot offset was in the longitudinal direction. 1In
this configuration, only the Bendix flexural pivots were
tested on the 50-pound platform, the 150-pound platform, and
the 150-pound platform with redistributed weights. The re-
distributed weight of the 150-pound platform was accomplished
by locating 50 pounds of the cylindrical weights equidistant
(7.5 inches laterally) from the center line of the platform.
This was done to change the inertia characteristics of the

platform.

The location of the instrumentation used in this phase of
the testing was the same as shown in Figure 13. The flight
test conditions were the same as shown in Table V.
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Schematic of the Two-Dimensional
DAVI Platform.
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FLIGHT TEST RESULTS

Figures 88 through 94 show typical oscillograph traces
obtained in the level flight conditions on the two-dimensional
DAVI utilizing the Bendix flexural pivots for all weight con-
figurations of the platform for both the longitudinal and
lateral offset of the pivots at 30 knots and at 100 percent
rotor rpm. It is seen from these figures that very poor
results were obtained. It is seen in Figure 88 that for

the 50-pound platform, an apparent resonance condition
existed, since excessive vibration levels were obtained on
the platform. It is further seen in comparing Figures 88

and 89 that the direction of offset of the pivots affected
the results obtained on the platform. For the lateral offset
of the pivots, excessive rolling of the platform occurred
resulting in high vibration levels, whereas for longitudinal
offset, pitching of the platform occurred, but a reduction

of vibration levels resulted.

Figures 95 through 97 show typical oscillograph traces ob-
tained in the landing conditions for the 150-pound platform.
These figures show the results obtained on the two-
dimensional DAVI utilizing the Bendix flexural pivots.

No high g level occurred for these transient conditions.

A 48-point Fourier analysis was done on the test data to
obtain the magnitude of the predominant harmonics. Table VI
gives the frequencies of the predominant harmonics.

Table XII gives the results of the Fourier analysis. The

results obtained from the two-dimensional DAVI platform

flight test program were very poor. In most cases for all

weight configurations of the platform, an increase in the
four-per-rev vibration level was obtained. In comparing .
the results obtained on the two-dimensional DAVI with lateral
offset of the pivots to the results obtained on the two-
dimensional DAVI with longitudinal offset, it is seen that

the vibration characteristics were changed, but in both cases,
the vibration levels were high. The 150-pound platform with
the weights oriented laterally on the platform to increase

the inertia of the platform had a much higher level of vi-
bration.

Because of the poor results obtained on the two-dimensional
platform, it was difficult to conclude which was the besti
pivot configuration. These poor results are attributed to
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TABLE XII.

TWO-DIMENSIONAL DAVI PLATFORM

PREDOMINANT VIBRATION LEVELS ON THE

Pivot Configuration - Rod End Bearings

50-Pound Platform

30 Knots

Main
Rotor
Speed
$ RPM

92

94

96

98

100

102

Pickup
tion

Main Rotor Harmonic Vibration Level (}g)

Four/Rev

Input Output

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Pwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Pwd Vt
Center Vt
Center Long.

Lft FPwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

___One/Rev
Input Output
.023 .023
.020 .025
.020 .024
.001 .002
.035 .039
.033 .035
.034 .034
.007 .005
.036 .041
.038 .042
.037 .046
.002 .006
.032 .032
.028 .033
.031 .032
.005 .002
.034 .036
.031 .037
.032 .039
.007 .007
.036 .042
.03] .035
.037 .041
.002 .002

.078 .135
.103 .167
.140 .137
.137 .257
.167 .029
.182 .243
.228 .207
.115 .202
.240 .302
.188 .265
.245 .197
.127 .186
.283 .386
123 .239
.197 .189
.114 .107
.600 .668
.023 .058
.259 .068
120 .027
.432 .477
.033 .043
.160 .l42
.120 .059

Eight/Rev
Input Output
.024 .085
.028 .050
.022 .036
.003 .006
.045 .047
.012 .069
.033 .015
.002 .013
.049 .064
.022 .077
.035 .020
.009 .008
.074 .028
.033 .0S3
.065 .021
.015 .029
.049 .043
.071 .105
.058 .047
.005 .080
.029 .100
.043 .065
.051 .039
.028 .078
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TABLE XII - Continued

Pivot Configuration - Rod End Bearings

50-Pound Platform

i 120 Knots

Main
Rotor Main Rotor Harmonic Vibration Level (}g)
Speed Pickup —__One/Rev Four/Rev Eight/Rev
(8 RPM) Location Input Output [Input Output [Input Output
Lft Fwd Vt .004 .005 .043 .026 .023 .035
92 Rt Fwd Vt .008 .013 .021 .036 .029 .019
Center Vt .007 .006 .027 .019 .019 .027
Center Long. .011 .012 . 094 .163 .042 .034
Lft Fwd Vt .030 .036 . 056 .078 .014 .052
94 Rt Fwd VvVt .028 .037 .062 .130 .051 .079
Center Vt .031 .033 .069 .142 .038 .013
Center Long. .012 .012 .106 . 222 .040 .047
Lft Pwd Vt .017 .019 .087 .129 .022 .053
96 Rt Fwd Vt .06 .017 ., 094 .200 .043 .075
Centerxr Vt .017 .020 .106 .127 .036 .002
Center Long. .011 .012 .133 .252 .038 .035
Lft Fwd Vt .012 .013 .100 .140 .029 .078
Rt Fwd Vt .013 .013 .093 .209 .050 .052
98 Center Vt .06 .015 |.111 .179 .035 .013
Center lLong. .011 .012 .151 .234 .034 .039
Lft Fwd Vt .025 .023 .117 .159 .043 .050
102 Rt Fwd Vt .029 .030 .070 .176 .,021 .034
Center Vt .024 .032 . 094 .167 .040 .012
Center Long. .017 .018 .156 .194 .017 .024




TABLE XII - Continued
Pivot Configuration - Rod End Bearings
150-Pound Platform 30 Knots
|
1 . Main )
Rotor Main Rotor Harmonic Vibration Level(¥g)]
Speed Pickup One/Rev Four/Rev Eight/Rev
$ RPM) Location Input Output | Input Output [Input Output
5 Lft Fwd Vt .028 .028 s 15197 .162 .043 .044
92 Rt Pwd Vt .023 .027 }.118 .146 .004 .030
' Center Vt .026 .032 |.180 .075 .023 .01l
Center Long. .004 -004 -166 .057 .007 -010
Lft Fwd Vt .028 .025 |.155 .194 .048 .062
94 Rt Fwd Vt .023 .029 [.141 .152 .013 .022
Center Vt .025 .037 [.187 .104 .032 .009
Center Long. .001 .003 .117 .033 .003 .008
Lft Fwd Vvt .025 .026 .290 . 398 .069 .099
Rt Pwd Vt .028 .033 |.229 .317 .037 .020
96  ~enter Vt .031 .040 |.298 .191 .051 .026
Center Long. .005 .008 .105 .066 .008 .006
Lft Fwd Vt .026 .023 .179 .235 .016 .069
08 Rt Pwd Vt .023 .027 |(.144 .158 .033 .015
Center Vt .024 .035 .170 .118 .031 .020
Center Long. .003 .005 .066 .031 .015 .011
Lft Fwd Vt .057 .063 {.217 .315 .026 .106
Rt FPwd Vt .050 .061 .166 .22} .058 .072
100 Center Vt .055 .073 .182 .149 .071 .005
g Center Long. .011 .012 .121 .036 .021 .010
Lft Fwd Vt .048 .055 .192 .276 .041 .087
Rt Fwd Vt .039 .057 .129 .156 .027 .020
102 Center Vt .047 .066 |.146 .132 .036 .024
Center Long. .009 .007 .122 .033 .023 .007
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TABLE XII - Continued

Pivot Configuration - Rod End Bearings

150-Pound Platform 120 Knotvy
Main
Rotor ' |_Main Rotor Harmonic Vibraticn Level(tg)
Speed Pickup —__One/Rev Four/Rev Right/Rev
(3 RPM) Location Input Cutput | Input Output [Input Output
Lft Fwd Vt .015 .015 |[.026 .050 .006 .021
Center Vt .015 .014 |.03§ .022 .026 .006
Center Long. .011 .017 .100 .037 .054 .011
Lft Fwd Vt .011 .009 {.057 .062 .021 .033
94 Rt Pwd Vt .012 .010 {.051 .072 .043 .023
Center Vt .006 .006 [.074 .017 .039 .00l
Center Long. .013 ,016 |.114 .044 .032 .009
Lft Fwd Vt .016 .016 [.107 .109 .030 .037
5 Rt Fwd Vt .016 .019 [.097 .132 .025 .012
6 Center Vt .015 .015 |.134 .055 .020 .007
Center Long. .008 .009 |[.140 .067 .012 .004
Lft Fwd Vt .015 .015 [.116 .122 .026 .036
98 Rt Pwd Vt .021 .027 |.112 .130 .018 .045
Center Vt .017 .019 |.141 .056 .015 .001
Center Long. .012 .019 |.140 .067 .015 .004
Lft Fwd Vt .020 .021 (.098 .098 .029 .013
Rt Pwd Vt .014 .014 {.102 .140 .008 .029
100 Center Vt .014 .020 [.109 .081 .013 .005
Center Long. .016 .023 |.155 .082 .009 .008
Lft Fwd Vt .006 .006 |.091 .086 .028 .025
Rt Pwa Vt .006 .008 [.081 .102 .001 .068
102 Center Vt .007 .005 [.095 .056 .017 .016
Center Long. .015 .023 |[.147 .062 .026 .008
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TABLE XII - Continued

Pivot Configuration - Rod End Bearings

200-Pound Platform 30 Xnots
|
Main
Rotor Main Rotor Harmonic Vibration Level (¥g)
Speed Pickup ~One/Rev Four/Rev ght/Rev
(3 RPM) Location ﬁhput Output [Input Output [Input Output
Lft Fwd Vt .048 .051 |.167 .201 .040 .108
92 Rt Pwd Vt .040 .049 |.165 .168 .024 .079
Center Vt .046 .059 |.244 .055 .040 .007
Center Long. .006 .009 173 /7 .026 .011 .012
Lft Fwd Vt .005 .005 |.181 .223 .023 .158
94 Rt Pwd Vt .001 .009 |.172 .204 .031 .081
Center Vt .006 .016 |.225 .089 .028 .008
Center Long. .004 .003 [.114 .034 .005 .016
Lft Fwd Vt .024 .033 |.273 .257 .048 .126
96 Rt Fwd Vt .022 .035 |.265 .249 .092 .131
Center Vt .022 .038 |.318 .107 .086 .019
Center Long. .003 .007 |.108 .057 .022 .013
Lft Fwd Vt .035 .041 [.199 .214 .042 .134
Rt Pwd Vt .048 .028 |.090 .179 .004 .036
98 Center Vt .032 .048 |.204 .090 .045 .004
Center Long. .008 .014 .122 . 057 .005 .015
Lft Fwd Vt .025 .039 .254 .238 .060 .160
Rt Fwd Vt .027 .033 (.224 .218 .072 .152
100 Center Vt . .028 .041 |.251 .111 .071 .010
Center Long. .006 .006 [.1l19 .069 .013 .009
Lft Pwd Vt .026 .032 [.215 .218 .032 .182
Rt Fwd Vt .022 .032 |.181 172 .053 .100
102 Center Vt .023 .036 |.196 .097 .047 .011
Center Long. .005 .069 .110 .067 .033 .010
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TABLE XII - Continued
Pivot Configuration - Rod End Bearings ]
200-Pound Platform 120 Knots
Main
Rotor Main Rotor Harmonic Vibration Levelllg)| |
Speed Pickup One/Rev Four/Rev Eight/Rev
(¥ RPM) Location nput Output | Input Output [Input Output
Lft Fwd Vt .008 .011 |.048 .011 .007 .011
92 Rt Fwd Vt .009 .011 |.047 .02l .037 .021
Center Vt .005 .005 {.C59 .022 .026 .008
Center Long. .002 .010 [.116 .028 .046 .008
Lft Fwd Vt .022 .027 |.045 .021 .030 .026
94 Rt Fwd Vt .020 .031 |.044 .029 .044 .006
Center Vt .018 .026 |.061 .023 .036 .003
Center lLong. .008 .0%3 [.099 .020 .042 .009
Lft Pwd Vt .022 .027 |.096 .036 .042 ,035
9¢ Rt Fwd Vt .024 .030 [.087 .080 |.034 .037
Center Vt .026 .030 |.124 .021 .040 .016
Center Long. .010 .016 |.128 .032 .045 .014
Lft Pwd Vt .019 .022 [.D96 .045 .028 .058 :
98 Rt Fwd Vt .019 .028 [.091  .056 .020 .023 ,
Center Vit .025 .029 [.123 .020 |.021 .013 ;
Center Long. .013 .034 |.142 .020 .019 .010
Lft Fwd Vt .015 .016 (.095 .021 .019 .038 :
Rt Fwd Vt .015 .015 [.087 .052 .008 .062
100 Center Vt .016 .017 |.110 .020 .019 .008
Center Long. .006 .012 (.137 .024 .022 .009
Lft Fwd Vt .008 .011 |.084 .047 .031 .024
Rt Fwd Vt .015 .021 |.083 .030 .004 .026
102 Center Vt .018 .018 |.102 .035 .019 .005
Center Long. |, 012 .019 [.154 .040 .010 .003
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TABLE XII - Continued

Pivot Configuration - Rod End Bearings

200-Pound Platform With 3-Inch Offset CG

30 Knots

Main
Rotor Main Rotor Harmonic Vibration Level (tg)
Speed Pickup One/Rev Four/Rev Eight/Rev
(8 RPM) Location nput Output [Input Output |Input Output
Lft Fwd Vt .031 .033 .115 .018 .042 .020
92 Rt Fwd Vt .025 .026 .154 .253 .006 .023
Center Vt .032 .045 .201 .087 .029 .019
Center Long. .007 .009 «.166 .031 .007 .01l
Lt Pwd Vt .033 .041 .233 .102 .051 .046
94 Rt Fwd Vt .029 .039 < 273 .400 .050 .096
Center Vt .025 .051 . 323 .051 .068 .010
Center Long. .007 .019 .138 .023 .014 .020
Lft Fwd Vt .037 .042 . 338 .124 .033 .050
96 Rt Fwd Vt .037 .050 . 250 .410 .039 .055
Center Vt .041 .055 .280 . 046 .053 .003
Center Long. .006 .010 .124 . 044 .012 .020
Lft Fwd Vt .025 .030 .214 .128 .051 .050
Rt Fwd Vit .027 .033 [,235 .411 .051 .050
98 Center Vt .026 .040 |.248 .038 .055 .008
Center Long. .004 .007 .114 .056 .002 .01l
Lft Fwd Vt .028 .025 .227 . 144 .103 .058
Rt Fwd Vt .022 .G28 . 254 . 387 .115 .076
100 Center Vt .026 .035 .248 .031 .112 .019
Center Long. .003 .004 .088 .078 .029 .002
Lft Fwd Vt .033 .037 .020 .135 .082 .059
Rt Fwd Vt .026 .033 .199 .337 .081 .066
102 Center Vt .042 .041 |.1295 .033 .080 .016
Center Long. .004 .01l1 .024 .077 .009 .015
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TABLE XII - Continued

Pivot Configuration - Rod End Bearings

200-Pound Platform With 3-Inch CG Offset 120 Knots
Main
Rotor Main Rotor Harmonic Vibration Level(ig)
Speed Pickup —___One/Rev Four /Rev ght/Rev
(% RPM) Location Input Output |[Input Output [Input Output
. Lft Fwd Vt .021 .022 (.042 .022 .011 .015
92 Rt Fwd Vt .020 .024 |.062 .077 .039 .020
Center Vt .024 .023 |.059 .054 .024 .009
Center Long. .012 .017 [.114 .023 .046 .011
Lft Fwd Vt .029 .035 |.040 .016 .034 .017
Center Vt .029 .042 |.066 .046 .039 .016
Center Long. .016 .019 |.089 .022 .039 .013
Lt Pwd Vt .022 .025 |.111 .045 .037 .017
o Rt Fwd Vt .027 .029 |.112 .216 .032 .018
Center Vt .026  .034 |.140 .084 .041 .002
Center Long. .013 ,022 |.128 .043 .033 .017
t'e Pwd Vt .016 .021 |.109 .065 .042 .033
Rt Fwd Vt .014 .022 |.115 .248 .015 .004
98 Center Vt .019 .025 |.141 .080 .029 .004
Center Long. .012 .028 (.130 .032 .039 .018
Lft Fwd Vt .013 .015 |.103 .060 .023 .022
Rt Pwd Vt .016 .020 |.099 .228 .009. .069
100 Center Vt .015 .019 |.126 .081 .020 .004
Center Long. .012 .020 .136 .037 .027 .004
Lftrsgdvzt .013 .018 |.099 .0S1 | .034 .020
Yoz e .017 .026 [.099 .194 | .019 .034
Sl N .016 .021 [.123 .087 | .034 .01l
Center Long. | 015 .025 l.150 .027 | .024 .006
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TABLE XII - Continued

Pivot Configuration - Rubber

50-Pound Platform

30 Knots

Main
Rotor
Snaed

Pickup

(¢ nPM) Location

Main Rotor Harmonic Vibration Level (tq)

One/Rev

Eight/Rev

Input Output

Input Cutput

92

94

96

98

100

102

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center LoONg.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

.021
.023
.021
.004

.019
.016
.024
.007

.032
.032
.030
.007

.029
.026
.028
.008°

.021
.019
.019
.010

.021
.019
.015
.015

.038
.042
.037
.055

0032
.033
.033
.005

.036
.024
.035
.003

.031
.028
.034
.005

.029
.024
.026
.00l

.026
.022
.023
.003

Four/ltev
Input Output
.136 .077
.194 .026
- 246 .103
. 159 .076
. 220 .066
. 251 . 041
.298 .109
127 . 050
.199 .044
.186 . 055
.229 .068
.107 .030
.249 .030
.187 .079
.235 .056
.079 .010
.289 .034
.114 .101
.189 .018

1.113 .006
.261 .063
.029 .097
121 .002
.098 .010

.037 .024
.022 .013
.031 .022
.002 .014
.053 .025
.042 .021
.057 .048
.004 .018
.019 .005
.018 .025
.028 .014
.006 .026
.048 .035
.029 .035
.046 .050
.010 .006
.069 .058
.040 .077
.056 .063
.018 .069
.063 .057
.040 .064
.043 .095

.016
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TABLE XII - Continued

Pivot Configuration - Rubber

50-Pound Platform 120 Knots
Main
Rotor Main Rotor Harmonic Vibration Level(g)
Speed Pickgp e/Rev Four/Rev t/Rev
(8 RPM) Locatior nput Output [Input Output [Input Output
LEt Fwd Vt .053 .061 [.046 .021 | .002 .007
92 Rt Fwd Vt .055 .059 [.033 .0l18 |.062 .068
Center Vt .058 .056 |.049 .017 |.040 .01l
Center Long. .004 .005 |.106 .046 | .052 .086
Lft Fwad V- .017 .018 [.028 .010 |.014 .010
94 Rt Fwd Vt .016 .014 [.008 .024 | .044 .042
Center Vt .018 .020 [.017 .007 |.040 .017
Center Long. .008 .007 .093 .030 .045 .071
Lft Fwd Vt .010 .012 [.072 .018 |.029 .023
96 Rt Fwd Vt .016 .017 [.069 .005 |.042 .062
Center Vt .013 .011 |[.088 .030 |.035 .01l
Center Long. .005 .01l .125 .029 .042 .040
Lft Fwd Vt .018 .028 |.086 .022 |.039 .022
Rt Fwd Vt .022 .028 |.080 .021 |.039 .058
98 Center Vt .022 .024 |[.105 .041 |.032 .023
Center Long. .010 .011 [.138 .035 | .043 .083
Lfs Ewe Ve .027 .032 |.116 .003 |.039 .050
oo PR .031 .038 [.098 .026 |.026 .07
CENEEr v e .035 .03¢ [.124 .027 |.024 .027
CeHECTpLOTgE .012 .0l4 |[.154 .037 |.024 .122
Lft Fwd Vt .013 .013 [.067 .027 |.013 .024
Tl i .013 .021 [.090 .014 |.006 .05l
Center Vt .015 .016 |.088 .029 |.005 .033
Center Long. .009 .012 |.148 .017 |.022 .107
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TABLE XII - Continued

Pivot Configuration - Rubber

150~-Pound Platform

30 Knots

Main
Rotor Main Rotor Harmonic Vibration Level (¥g)
Speed Pickup One/Rev Four/Rev Eight/Rev
(8 RPM) Location Tnput Output |Input Output [|Input Output
Lft Fwd Vt - .032 - .294 - .024
Rt Fwd Vt .027 .037 |.240 .132 .035 .012
92 anter Vt .035 .040 |.300 .032 | .039 .018
Center Long. .006 .002 (.142 .053 .022 .013
LEt Fwd Vt .014 .025 |.246 .254 .072 .002
94 Rt Fwd Vt .016 .025 |.262 .157 .047 .024
Center Vt .021 .022 [.330 .053 .074 .031
Center Long. .008 .006 |.123 .050 .007 .022
Lft Fwd Vt .025 .031 |.197 .068 .021 .011
Rt Fwd Vt .025 .029 .174 .158 .020 .019
96 Center Vt .026 .03] |.224 .042 .024 .016
Center lLong. .005 .004 .105 .037 .009 .010
Lft Fwd Vt .016 .019 |.102 .046 .008 .005
Rt Pwd Vt .018 .015 |.D69  .100 .003 .005
98 Center Vt .014 .015 |.093 .030 .010 .004
Center Long. .003 .005 |[.046 .010 .002 .006
Lft Fwd Vt .020 .025 |.187 .135 .040 .030
Rt Fwd Vt .025 .031 .118  .183 .025 .006
100 Center Vt .025 .029 .154 .060 .048 .010
Center Long. .005 .007 |.115 .0l4 .009 .001
Lft Fwd Vt .025 .032 [.151 .204 .027 .024
Rt Fwd Vt .021 .031 |(.058 .160 | .003 .012
102 Center Vt .026 .030 [.091 .053 .013 .010
Center Long. .003 .002 [.095 .0l0 .007 .007
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TABLE XII -~ Continued

Pivot Configuration - Rubber

150-Pound Platform 120 Knots
Main

Rotor . _Main Rotor Harmonic Vibration Level (¥g)
Speed Pickup ___One/Rev Four/Rev ev |
(8 RPM) Location Tnput Output |input Output |Input Output|

Lft Fwd Vt .015 .008 |.068 .070 .024 .002

= Rt Fwd Vt .015 .023 |[.bel  .031 .027 .027

Center Vt .019 .019 |.088 .05l .026 .037

Center Long. .005 .014 [.120 .016 .025 .028

Lft Fwd Vt .060 .044 [.198 .09l .143 .032

Rt Fwd Vt .019 .027 |.094 .038 .006 .012

100 Center Vt .016 .025 |.106 .053 .019 .020

Center Long. .010 .019 .13] .030 .007 .011

Lft Fwd Vt .012 .016 [.093  .013 .027 .009

Rt Fwd Vt .007 .022 |(.084 .052 .031 .017

102 Center Vt .010 .006 [.098 .05l .032 .003
Center Long. .014 .024 «157 .023 .028 .008

|
200-Pound Platform 30 Knots

Lft Fwd Vt .024 .021 [.117 .339 .024 .136

92 Rt Fwd .022 .025 [.203 .112 .010 .047

Center Vt .020 .028 |.240 .073 .020 .025

Center Long. .004 .006 .162 .064 .008 .012

Lft Fwd Vt .028 .027 |.193  .260 .042 .071

94 Rt Fwd Vt .023  .027 [.223 .175 .036 .038

Center Vt .023 .028 {(.282 .043 .047 .034

Center Long. .006 .008 [.137 .060 .009 .012

Lft Fwd Vt .042 .049 [.245 .052 .043 .048

of Dt Bwd VE .037 .054 [.182 .255 | .041 .032

Center Vt .044 .049 [.257 .034 .054 .021

Center Long. .005 .002 [.095 .049 .020 .008
- — iy s L. - )

156

S ———




TABLE XII - Continued
Pivot Configuration - Rubber
200~-Pound Platform 30 Knots
Main
Rotor Main Rotor Harmonic Vibration Level (1g)
Speed Pickup One/Rev Four /Rev Eight/Rev
(8 RPM) Location nput Output [Input Output [Input Output
Lft Fwd Vvt .033 .045 .?64 .118 .048 .041
98 Rt Fwd Vvt .031 .045 .157 .226 .023 .032
Center VvVt .032 .045 .225 .018 .039 .019
Center Long. .005 .003 .122 .028 .018 .007
Lft Fwd VvVt .029 .034 .198 211 .052 .045
Rt Fwd VvVt .020 .028 .118 .125 .024 .038
100 Center Vt .027 .034 |.144 .061 |-.040 .020
Center Long. .003 .008 .082 .029 .021 .021
Lft Fwd Vt .038 .044 .271 .266 .080 .080
Rt Fwd Vvt .028 .041 .154 .138 .039 .054
102 Center Vt .036 .043 |.194 .090 .066 .029
Center Long. .007 .007 .122 .038 .043 .031
200-Pound Platform 120 Knots
Lft Fwd Vt .007 .006 [.048 .096 .025 .046
94 Rt Fwd Vt .002 .0G5 .056 .024 .039 .003
Center Vt .005 .005 .067 .043 .035 .034
Lft Fwd Vt .024 .036 .107 .161 .032 .023
96 Rt Fwd Vt .026 .027 .098 .072 .035 .015
Center Vt .027 .033 .135 .061 .039 .037
Center Long. .007 .010 .144 .015 .058 .020
Lft Fwd Vt .023 .026 .140 .143 .044 .024
Rt Fwd Vt .024 ,035 = 15257 . 13145 .031 .005
98 Center Vt .024 .029 [.171 .071 .043 .030
Center Long. .015 .020 .168 .017 .054 ,012
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TABLE XII - Continued

Pivot Configuration - Rubber

200-Pound Platform 120 Knots
Main
Rotor Main Rotor Harmonic Vibration Level (¥g)!
Speed Pickup One/Rev Four/Rev Eight/Rev
% RPM) Location Input Output [Input Output |[Input Output
Lft Fwd Vt .028 .024 111 .116 .036 .016
100 Rt Fwd Vt .026 .034 .094 .115 .019 .007
Center Vt : .025 .027 .127 .076 .029 .017
Center Long. .014 .021 .162 .023 .026 .009
Lft Fwd Vt .029 .032 .076 .102 .039 .,021
102 Rt Fwd Vt .029 .032 .101 .100 .019 .029
Center Vt .03] .034 .103 .082 .038 .012
Center Long. .018 .019 .143 .027 .027 .006
200-Pound Platform With 3-Inch CG Offset 30 Knots
Lft Fwd Vt .011 .012 . 046 .162 .022 .017
92 Rt Fwd Vt .007 .013 .141 .193 .018 .019
Center Vt .011 .011 .165 .156 .025 .026
Center Long. .001 .003 .129 .060 .010 .009
Lft Fwd Vt .032 .039 .229 .292 .057 .091
94 Rt Fwd Vt .028 .037 |.292 .405 .053 .038
, Center Vt .026 .038 . 348 .198 .070 .019
Center Long. .003 .003 .156 100 .006 .002
Lft Fwd Vt .036 .043 «1587 .133 .029 .017
96 Rt Fwd Vt .030 .040 .201 .169 .039 .009
Center Vt .035 .042 . 225 .082 .041 .010
Center Long. .006 .010 .107 . 066 .015 .008
Lft Fwd Vt .056 .027 |.062 077 .115 .013
Rt Fwd Vt .031 .023 101 . 066 .039 .009
8 Center Vt .030 .029 [.142 .058 .029 .018
Center Long. .004 .007 .097 .053 .017 .004
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TABLE XII - Continued
Pivot Configuration - Rubber
200-Pound Platform With 3-Inch CG Offset 30 Knots
Main
_ Rotor Main Rotor Harmonic Vibration Level (g)
Speed Pickup One/Rev Four/Rev Eight/Rev
(¢ RPM) Location Input Output Input Output Input Output
Lft Fwd Vt .035 .037 .102 .053 .029 .033
1 Rt Fwd Vt .037 .029 .107 .073 .016 .007
' 00  center Vt .03] .037 |.096 .058 |.022 .0l2
Center Long. .005 .002 .053 .050 .011 .010
Lft Fwd Vt .020 .026 .077 .036 .017 .015
‘ 102 Rt Fwd Vt .019 .028 .089 .062 .011 .008
i Center Vt .020 .026 .066 . 065 .008 .001
i Center Long. .006 .008 043 . 044 .004 .004
200-Pound Platform With 3-Inch CG Offset 120 Knots
Lft Fwd Vt .031 .038 .079 .086 .033 .054
96 Rt Fwd Vt .033 .037 .094 . 069 .024 .025
Center Vt .03] .042 .119 .086 .026 .017
Center Long. .006 .009 .121 .005 .039 .010
Lft Fwd Vt .024 .029 .129 .122 .036 .060
98 Rt Pwd Vt .027 .034 .135 .142 .045 .022
> Center Vt .029 .035 .157 «117 .043 .025
Center Long. .011 .008 . 159 .018 .050 .018
Lft Fwd Vt .018 .019 .089 .132 .046 .035
Rt Fwd Vt .018 .029 .119 . 140 .030 .004
100 Center Vt .017 .025 .126 127 .026 .009
Center Long. .014 .022 .162 .035 .030 .004
Lft Pwd Vt .033 .033 .093 .124 .048 .023
Rt Fwd Vt .028 .033 .135 .154 .013 .014
102 center vt .033 .034.|.123 .111 | .033 .o0ll
Center Long. .008 .011 <171 .024 .026 .012
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TABLE XITI ~ Continued
Pivot Configuration - Lateral Offset Bendix Flexural
50-Pound Platform 30 Knots
Main +
Rotor Main Rotor Harmonic Vibration Level (Z9)
Speed Pickup One/Rev Four/Rev Eight/Rev
(3 RPM) Location Input Output |Input Output [Input Output
Lft Fwd Vt .030 .029 .097 .147 .040 .033
92 Rt Fwd Vt .028 .037 .173 .266 .015 .051
Center Vt .031 .030 .198 .202 .023 .026
Center Long. .007 .007 - 137 . 382 .004 .008
Lft Fwd Vt .018 .031 .134 .056 .038 .026
94 Rt Fwd Vt .016 .020 |.138 .187 .033 .028
Center Vt .019 .019 177 .140 .037 .022
Center Long. .007 .001 .079 <111 .013 .017
Lft Fwd Vt .021 .023 .158 057 .027 .014
96 Rt Fwd Vt .024 .027 .149 .169 .018 .018
Center Vt .019 .023 . 177 s L2 .030 .016
Center Long. .015 .006 .067 .043 .007 .008
Lft Fwd Vt .027 .031 .188 .185 .046 .006
98 Rt Fwd Vt .026 .032 .089 . 245 .039 .022
Center Vt .030 .034 .144 .095 .052 .021
Center Long. .002 .004 .054 .008 .012 .017
Lft Fwd Vt .052 .055 |[.214 .918 .035 .008
100 Rt Fwd Vt .043 .054 |.168 1.097 .016 .002
Center Vt .049 .053 |.140 .136 .031 .046
Center Long. .008 .007 .098 .066 .019 .003
Lft Fwd Vt .034 .045 (.166 .534 .039 .027
102 Rt Fwd vVt .034 .043 |.131 .649 .038 .021
Center Vt .037 .044 |.125 .116 .034 .041
Center Long. .004 .008 .123 .080 .026 .008
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TABLE XII - Continued
Pivot Configuration - Longitudinal Offset Bendix Flexural
50-Pound Platform 30 Knots
Main
Rotor Main Rotor Harmonic Vibration Level +
Speed  Pickup —__One/Rev —_Four/Rev ght/Rev
(8 RPM) Location Input Output [Input Output [Input Output
Lft Fwd Vt .018 .024 .166 .189 .024 .020
92 Rt Pwd Vt .016 .023 |.121  .137 .013 .02l
Center Vt .017 .024 .204 .140 ,022 .012
Center Long. .004 .002 .146 .085 .005 .010
Lft Fwd Vt .016 .015 .150 .053 .039 .008
94 Rt Fwd Vt .013 .015 |.125 .070 .031 .009
Center Vt .014 .013 177 .066 .039 .006
Center Long. .004 .003 .079 . 090 .012 .010
Lft Fwd Vt .027 .032 .231 .027 .024 .028
96 Rt Fwd Vt .028 .034 .200 «.121 .033 .020
Center Vt .029 .029 .248 .085 .051 .015
Center Long. .007 .011 .096 .160 .006 .013
Lft Fwd Vt .025 .027 .,163 . 015 .032 .015
98 Rt Fwd Vt 022 .025 .126 .121 ,029 .012
Center Vt .023 .019 .151 .101 .041 .012
Center Long. .002 .022 .097 .175 .017 .014
Lft Fwd Vt .027 .035 }.232 .020 .052 .042
100 Rt Fwd Vt .027 .033 |.188 .190 .053 .051
Center Vt .027 .024 |.207 .139 .071 .054
Center Long. .006 .005 .098 .229 .,017 .027
Lft Fwd Vt .036 .047 |.220 .033 .040 .028
102 Rt Fwd Vt .033 .041 |.090 .225 .035 .026
Center Vt .037 .042 [.117 .187 .039 .032
Center Long. .004 .005 .121 . 256 .025 .018
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TABLE XII - Continued
Pivot Configuration - Lateral Offset Bendix Flexural
50-Pound Platform 120 Knots
Main
Rotor Main Rotor Harmonic Vibration Level (1g)]
Speed  Pickup “One/Rev Four/Rev Eight/Rev
(¥ RPM) Location Tnput Output [Input Output |[Input Output
Lft Fwd Vt .015 .006 .036 .030 .036 .041
92 Rt Fwd Vt .012 .021 |.037 .076 | .020 .019
Center Vt .016 .013 .024 .069 .028 .011
Center Long. .010 .013 .089 . 251 .049 .033
Lft Fwd Vt .01l6 .019 .08¢ .096 .037 .032
94 Rt Fwd Vt .018 .020 |.078 .038 | .035 .013
Center Vt .022 .021 .103 .005 .035 .014
Center Long. .009 .020 .119 .199 .039 .036
Lft Fwd Vt .011 .014 . 068 .070 .035 .014
96 Rt Fwéd Vt .007 .007 .074 .059 .024 .017
Center Vt .010 .015 . 085 .027 .030 .008
Center Long. .009 .017 .115 .122 .029 .022
Lft Fwd Vt .016 .013 .079 .113 .037 .014
Rt Fwd Vt .011 .020 [.099 .131 .007 .002
98 Center Vt .015 .011 |.1l16 .06l .024 .014
Center Long. .011 .009 .134 .059 .019 .01le6
Lft Fwd Vt .014 .014 .080 .143 .024 .008
Rt Fwd Vt .015 .021 |.114 .124 .014 .005
100 Center Vt .017 .018 |.118 .033 .021 .013
Center Long. .017 .016 .142 .028 .020 .019
Lft Fwd Vt .023 .019 .067 .114 .025 .022
Rt Fwd Vt .013 .022 .097 .057 .011 .022
102 Center Vt .020 .020 .109 .034 .021 .006
Center Long. .015 .022 .138 . 049 .041 .012
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TABLE XII - Continued

Pivot Configuration - Lateral Offset Bendix Flexural

150-Pound Platform

30 Knots

Main
Rotor Main Rotor Harmonic Vibration Level (*g)
Speed Pickup —__One/Rev — Four/Rev Eight/Rev
(3 RPM) Location Input Output |[Input Output |Input Output
Lft Fwd Vt .034 .042 .163 .179 .055 .075
92 Rt Fwd Vt .029 .046 .140 . 321 .015 .088
Center Vt .031 .039 .226 . 091 .017 .031
Center Long. .003 .004 .161 . 219 .002 .010
Lft Fwd Vt .022 .031 .239 .483 .065 .207
94 Rt Fwd Vt .019 .038 .028 . 605 .030 .133
Center Vt .024 .,031 .275 , 096 .048 .047
Center Long. .005 .006 .138 .098 .002 .021
Lft Fwd Vt .015 .015 .211 . 741 .034 .078
96 Rt Fwd Vt .008 .01l6 .182 . 847 .035 .131
Center Vt .009 .014 .221 . 096 .037 .9019
Center Long. .004 .002 .104 .040 .011 .003
Lft Fwd Vt .025 .027 .042 .162 .012 .029
Rt Fwd Vt .025 .027 .034 .203 .005 .029
98  Ccenter Vt .026 .030 |.038 .039 .003 .005
Center Long. .008 .011 .028 .018 .011 .008
Lft Fwd Vt .032 .040 .062 .234 .009 .027
Rt Fwd Vt .030 .044 .080 .262 .015 .019
100 Center Vt .032 .040 |.078 .02l .013 .0l0
Center Long. .005 .011 .025 .029 .001 .006
Lft Fwd Vt .040 .051 .059 .119 .008 .033
Rt Fwd Vt .047 .051 .023 .109 .022 .048
102 Center Vt .037 .037 [.064  .065 .014 .008
Center Long. .005 .005 .019 . 009 .003 .009
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TABLE XII - Continued

Pivot Configuration - Lateral Offset Bendix Flexural

150-Pound Platform 120 Knots
Main
Rotor Main Rotor Harmonic Vibration Level(fg)
Speed Pickup —__One/Rev Four/Rev Eight/Rev
(8 RPM) Location Input Output |Input Output [Inpu tput
Lft Fwd Vt .003 .005 |.041 .203 .012 .048
92 Rt Fwd Vt .008 .012 |.071 .259 .043 .042
Center Vt .003 .001 [|.072 .041 .025 .002
Center Long. .010 .06 |.104 .148 .056 .008
Lft Fwd Vt .019 .20 |.004 .225 .016 .069
94 Rt Fwd Vt .016 .029 [.037 .235 .035 .054
Center Vt .022 .025 |.025 .029 .029 .007
Center Long. .013 .014 |.090 .080 .048 .009
Lft fwd Vt .032 .029 |.067 .321 .020 .073
Rt Fwd Vt .031 .039 [.068 .329 .038 .035
96  Center Vt 029 .024 [.087 .046 | .027 .008
Center Long. .019 .026 |.105 .064 .030 .003
Lft Fwd Vt .008 .03 [.083 .689 .015 .062
Rt Fwd Vt .011 .013 |.073  .795 .043 .095
98 Center Vt 012 .014 .095 .059 .029 .025
Center Long. .009 .018 .126 .077 .028 .005
Lft Fwd Vt .016 .025 |.104  .289 .025 .014
Rt Fwd Vt .01 .05 |.104 .363 .013 .050
100  center Vt .017 .02% |[.124 .045 |.015 .0l0
Center Long. .011 .028 .145 .055 .009 .002
Lft Fwd Vt .031 .040 .105  .123 .038 .004
Rt Fwd Vt .035 .048 |.100 .162 .023 .091
102  center Vt 037 .040 |.120 .032 |.01d4 .025
Center Long. .013 .018 .164 .026 .021 .013
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TABLE XII - Continued

Pivot Configuration - Lateral Offset Bendix Flexural

1 200-Pound Platform 30 Knots
k
4 Main
; Rotor Main Rotor Harmonic Vibration Level (1g)
3 Speed Pickup %ﬁ One/Rev F3ﬁ?§§ev Eight/Rev
: (8 RPM) Location nput Output |Input Output [Input Output
’ Lft Fwd Vt .022 .032 [.137 .201 .095 .239
Rt Fwd Vt .020 .028 (.145 .091 .019 .201
92 enter Vt 022 .030 |.208 .048 | .031 .007
Center Long. .006 .010 [.142 .176 .015 .01l
Lft Fwd Vt .023 .040 |.287 .182 .056 .315
94 Rt Fwd Vt .017 .039 |.282 .104 .101 .416
Center Vt .023 .040 |.362 .047 .079 .032
Center Long. .005 .018 |.161 .125 .009 .013
Lft Fwd Vt .022 .035 [.226 .078 .060 .300
Rt Fwd Vt .021 .035 |[.280 .054 .043 .034
96 Center Vt .001 .005 |.071 .040 .007 .231
Center Long. .007 .006 .118 .088 .007 .005
Lft Fwd Vt ,011  .009 [.201 .124 .031 .016
Rt Fwd Vt .010 .014 [.175 .062 .041 .257
98 center Vt 012 .016 [.206 .052 |.043 .040
; Center Long. .005 .001 |(.106 .054 .003 .015
Lft Fwd Vvt .028 .044 |.044 .082 .035 .033
Rt Fwd Vt .026 .043 [.045 .018 .022 .034
100  Center Vt .028 .047 |.047 .010 |.027 .007
' Center Long. .005 .010 :.011 .009 .016 .005
Lft Fwd Vt .030 .043 [.027 .015 .008 .003
Rt Fwd Vt .027 .046 (.014 .009 .002 .014
102 cCenter Vt .030 .043 |.021 .010 |.004 .00l
Center Long. .004 .013 {.002 .009 .008 .006
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TABLE XII - Continued

Pivot Configuration - Lateral Offset Bendix Flexural

200-Pound Platform 120 Knots
Main
Rotor - | Main Rotor Harmonic Vibration Level (¥g)
Speed  Pickup —__One/Rev —_Four/Rev Eight/Rev
(% RPM) Location Input Output [Input Output [Input Output
Lft Fwd Vt .012 .011 |.047 .158 | .032 .102
9o Rt Pwd Vt .010 .020 [.047 .08l | .062 .144
Center Vit .012 .015 |.036 .037 | .029 .012

Center Long. .009 .015 .124 .156 .041 .017

Lft Fwd Vt .016 .021 .057 .044 .014 .08l
94 Rt Pwé Vt .018 .021 .061 . 047 .059 .174
Center Vt .019 .020 .070 .034 .034 .020

Center Long. .006 .027 .109 . 094 .032 .011

LEt Fwd Vi .016 .011 |.082 .056 | .040 .125
Rt Pwd Vt 018 .016 |.077 .039 | .080 .321
96  center Vt 018 .021 |.094 .058 | .031 .045

Center Long. .006 .024 .125 .075 .032 .007

Lft Fwd Vt .011 .008 |.089 .071 .057 .066

98 Rt Fwd Vc .013 .010 .076 .038 .059 .333
Center Vt .012 .009 .100 .046 .023 .050

Center Long. .009 .054 .158 .052 .011 .008

Lft Fwd Vt .022 .039 .118 . 067 .043 .057

%0 Rt Fwd Vt .027 .052 .105 .034 .017 .102
Center Vt .026 .049 .130 .046 .023 .050

Center Long. .009 .054 .154 .052 .011 .008

Lft Fwd VvVt .009 .011 .112 . 085 .039 .058

102 Rt Fwd Vt .016 .014 .105 .03 - | .017 .013
Center Vt .021 .014 .124 .053 .027 .011

Center Long. .012 .076 .167 .017 .032 .014
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TABLE XII - Continued

Pivot Configuration - Lateral OCffget Bendix Flexural

200-Pound Platform With 3-Inch CG Offset

30 Knots

Main
Rotor
Speed

Pickup

(8 RPM) Location

Main Rotor Harmonic Vibration Level (1g)

One/Rev

Four/Rev

Eight/Rev

Input Output

“Input Output

Input Output

92

94

96

98

100

102

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt

R+ Fwd Vt
-ar Vt

« . .er Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

.024 .041
.022 .036
.024 .041
.008 .008
.033 .052
.027 .042
.034 .050
.0 .015
.029 .048
.024 .031
.024 .032
.004 .015
.012 .024
.015 .020
.014 .022
.002 .005
.035 .057
.029 .049
.030 .057
.004 .011
.040 .059
.030 .046
.033 .054
.005 .018

.095 .120
.121 . 057
.168 <111
.162 .035
.214 .100
.224 .066
.286 .104
. 150 .051
.187 .079
.164 .072
.204 .086
.094 .054
.096 .072
.084 . 057
.098 .075
.038 .034
<112 .078
.119 072
127 .085
. 020 s123
.106 .086
.110 .081
.107 .090
.094 .066

g

.035 .107
.014 .089
.023 .0C7
.002 .032
.042 .128
.031 .134
.033 .022
.007 .035
.042 .063
.032 .071
.041 .013
.011 .016
.011 .044
.013 .038
.013 .021
.007 .007
.002 .067
.043 .088
.031 .037
.029 .033
.043 .110
.037 .181
.035 .038
.026 .052
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TABLE XII - Continued

Pivot Configuration - Lateral Offset Bendix Flexural

200-Pound Platform With 3-Inch CG Offset 120 Knots
Main
Rotor Main Rotor Harmonic Vibration Level (}g)
Speed Pickup One/Rev Four/Rev Eight/Rev
(2 RPM) Location Input Output |Input Output |input Output
Lft Fwd Vt .020 .029 .022 .057 .007 .040
92 Rt Fwd Vt .018 .026 .055 .047 .028 .03%6
Center Vt .024 .028 .050 .068 .026 .007
Center Long. .005 .017 .104 . 035 .060 .019
Lft Fwd Vt .029 .039 .011 .021 .021 .033
94 Rt Fwd Vt .034 .044 |.018 .020 .031 .024
Center Vt .036 .046 .017 .015 .020 .007
Center Long. .013 : 4 NE .08¢° .038 .039 .018
Lft Fwd Vt .013 .013 .097 .056 .038 .038
96 Rt Fwd Vt .017 .030 .091 .035 .041 .072
Center Vt .014 .026 .118 .063 .026 .n
Center Long. .010 .034 .140 .051 .025 (vl |
Lft Fwd Vt .012 .037 .095 .056 .070 .131
Rt Fwd Vt .010 .032 .119 .040 .024. .054
98 Center Vt .013 .035 |.126 .057 | .022 .025
Center Long. .009 .037 .147 .038 .014 .021
Lft Fwd Vt .004 .033 .094 .072 .084 .176
Rt Fwd Vt .013 .030 .094 .036 .006 .073
100 center vVt .014 .028 [.099 .060 .028 .015
Center Long. .015 .046 .143 .039 .03] .003
Lft Fwd Vt .035 .043 .090 .067 .126 .517
Rt Fwd Vt .036 .047 . 099 .030 .038 .323
102 center Vt .033 .046 |.104 .060 | .033 .037
Center Long. .009 .037 .149 .021 .033 .068
168
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TABLE XII - Continued

Pivot Configuration - Longitudinal Offset of Bendix Flexural

50-Pound Platform

120 Knots

Main
Rotor
Speed

Pickup

(8§ RPM) Location

Main Rotor Harmonic Vibration Level (}g)

One/Rev

Four/Rev

_Eight/Rev

Input Output

Input Output

Input Output

92

94

96

98

100

102

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Pwd Vt
Center Vt
Center Long.

.022 .021
.022 .035
.025 .026
.020 .019
.020 .019
.023 .028
.023 .026
.009 .012
.010 .019
.019 .017
.011 .01l5
.017 .013
.019 .015
.017 .018
.019 .019
.010 .011
.017 .021
.026 .027
.034 .032
.022 .027
.016 .028
.022 .026
.024 .022
.012 .014

. 047 .031
.032 . 059
.040 .048
.082 .040
.082 . 040
.057 .055
.082 .073
.112 .094
.115 .021
.076 .083
.119 .077
.136 .151
.122 .002
.082 .098
.123 .091
.145 .188
.122 .025
.084 .129
117 .164
.155 .292
. 140 . 057
.101 .178
«117 .077
.163 . 287

.025 .040
.008 .032
.016 .036
.034 .029
.034 .029
.025 .039
037 .036
.031 .002
.045 .016
.035 .04+
.030 .027
.035 .007
.060 .018
.021 .047
.037 .041
.039 .015
.024 .012
.013 .030
.023 .007
.010 .021
.029 .008
.022 .035
.033 .031
.030 .012
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TABLE XII - Continued

Pivot Configuration - Longitudinal Offset Bendix Flexural

150-Pound Platform 30 Knots
Main
Rotor Main Rotor Harmonic Vibration Level (1g)
Speed Pickup —__One/Rev Four /Rev EBight/Rev
($ RPM) Location Input Output [Input Output [Input Output
Lft Fwd Vt .010 .009 L1132 .265 .030 .039
92 Rt Fwd Vt .009 .01.4 |.092 .131 | .007 .04l
Center Vt .012 .014 .133 .013 .024 .061
Center Long. .002 .006 .109 .095 .008 .031
Lft Fwd Vt .008 .015 .128 .112 .023 .024
94 Rt Fwd Vt .005 .013 [.101 .080 | .024 .023
Center Vt .009 .016 .149 .031 .023 .044
Center Long. .004 .022 .088 .035 .006 .020
Lft Fwd Vt .008 .014 .215 .068 .045 .050
96 Rt Fwd Vt .007 .011 .100 .548 .025 .050
Center Vt .010 .013 .176 .372 .032 .045
Center Long. .003 .013 .077 .231 .009 .018
Lft Fwd Vt .014 .010 .172 .081 .036 .012
Rt Fwd Vt .008 .,007 .084 .228 .027 .006
98 Center Vt .008 .009 [.136 .198 .034 .012
Center Long. .010 .009 .073 .113 .024 .010
Lft Fwd Vt .020 .029 .092 .037 .030 .014
Rt Fwd Vt .017 .029 .058 . 090 .026 .010
100 Center Vt .019 .027 |.076 .087 .030 .006
Center Long. .006 .004 .033 .051 .019 .005
Lft Fwd Vt .039 .048 .018 .022 .005 .002
Rt Fwd Vt .035 .051 .013 . 047 .004 .002
102 Center Vt .032 .054 |[.015 .032 .006 .002
Csnter Long. .002 .001 .004 .015 .002 .003
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TABLE XII - Continued

Pivot Configuration - Longitudinal Offset Bendix Flexural

150-Pound Platform

120 Knots

Main
Rotor
Speed

Pickup

(8% RPM) Location

One/Rev

Main Rotor Harmonic Vibration Level(ig)
4 Eight/Rev

ITnput Output

Input Output

92

94

96

98

100

102

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

Lft Fwd Vt
Rt Fwd Vt
Center Vt
Center Long.

.011 .015
.012 .017
.011 .016
.008 .014
.013 .014
.009 .018
.006 .010
.010 .009
.015 .026
.018 .026
.018 .026
.013 .014
.007 .010
.008 .008
.008 .011
.008 .01l4
.012 .020
.020 .027
.016 .032
.010 .034
.020 .018
.018 .032
.021 .027
.008 .011

[_Four/Rev

Input Output
.110 .179
.024 . 050
.066 .034
.107 .084
. 051 .061
.021 .054
.026 .029
.076 .015
012 .170
.116 .670
.072 .413
.100 .268
.098 .151
113 .451
.123 <275
152 .163
.105 .122
.098 o 205
.116 .171
.145 .080
.098 .154
.100 .243
.105 .143
.012 .025

.015 .031
.017 .039
.010 .047
.044 .033
.015 .024
.036 .043
.029 .049
.045 .031
.046 .057
.028 .076
.027 .075
.039 .041
.040 .027
.032 .023
.041 .010
.030 .006
.059 .024
.026 .013
.039 .005
.023 .003
.028 .012
.019 .015
.025 .013
.010 .006

171



TABLE XII - Continued

Pivot Configuration - Longitudinal Offset Bendix Flexural

150-Pound Platform Redistributed Weight 30 Knots
Main
Rotor Main Rotor Harmonic Vibration Level(g) |
Speed  Pickup One, Rev Four/Rev Eight/Rev
(¥ RPM) Location *Tﬁbut CGutput [Input Output [Input Output
Lft Fwd Vt .024 .027 [.209 .279 .038 .040
92 Rt Pwd Vt .023 .030 [.142 .454 .013 .045
Center Vt .022 .034 [.240 .167 .031 .054
Center Long. .006 .007 [.170 .100 .006 .015
Lft Fwd Vt .014 .019 |.202 .133 .033 .038
94 Rt Fwd Vt .011 .024 [.144 .513 .035 .042
Center Vt .017 .019 {.220 .234 .031 .045
Center Long. .003 .006 [.104 .180 .006 .008
Lft Fwd Vt .020 .024 [.311 .139 .059 .526
° Center Vt .023 .039 |.258 .485 .044 .728
Center Long. .009 .018 (.111 .371 .016 .249
LEt Fwd Vt .025 .025 (.260 .104 .006 .243
Rt Fwd Vt .017 .026 [.085 .759 .013 .349
98 Center Vt .021 .021 [.205 .447 .020 .423
Center Long. .003 .008 [.101 .323 .003 .140
LEt Fwd Vt .034 .034 [.051 .055 .023 .030
Rt Fwd Vt .027 .045 [.031 .078 .015 .035
100 Center Vt .030 .041 [.046 .054 .015 .043
Center Long. .005 .015 [.031 .047 .002 .010
Lft Fwd Vt .037. .045 [.035 .029 .022 .017
Rt Fwd Vt .032 .048 '~ |.026 .044 .022 .018
102 Center Vt .033 .046 |.027 .042 .028 .020
Center Long. .005 .005 {.018 .030 .021 .014
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TABLE XII - Continued

Pivot Configuration - Longitudinal Offgset Bendix Flexural

150-Pound Platform With Redistributed Weight 120 Knots
Main
Rotor Main Rotor Harmonic Vibration Level(lg)
Speed Pickup —__One/Rev Four/Rev "Eight/Rev
($ RPM) Location Input Output [Input Output [Input Output
Lft Md vt | 1027 lo36 |.022 210 |lo41 053
Rt F“’d vVt * L 2 . . .
92 Center Vt .024 .034 |.064 .030 .031 .097
Center Long. -008 .010 .114 .050 -057 -024
LEt Fwd Vt .027 .036 |.069  .086 AL & B
94 Rt Fwd Vt .028 .041 [.069  .694 .022 .106
Center Vt .027 .039 |.043  .323 .025 .145
Center Long. .011 .015 |.104  .268 .036 .046
LEt Fwd Vt .014 .012 [.034 .090 .047 .228
Rt Fwd Vt .015 .023 [.120 .800 .024 .284
9  enter Vt ,015 .020 |.090 .437 | .048 .355
Center Long. -009 .020 .115 0317 -050 -131
Pwd Vt .010 .010 |.083 .179 .055 .089
;itpwd vt .016 .082 [.119  .797 .036 .137
98 Center Vt .011 .029 [.134 .327 | .053 .105
Center Long. .007 .022 |.164 .20l .050 .050
Lft Fwd Vt .013 .015 |.105 .250 | .059 .112
100 Rt Fwd Vt .010 .013 [.110 .332 | .044 .152
Center Vt .010 .013 |.119 .238 | .053 .168
Center Long. .017 .015 |[.155  .112 .052 .065
Lft Fwd Vt .014 .010 [.047 .474 | .045 .405
102 Rt Fwd Vt .014 .0l16 |.108 .275 .035 .460
Center Vt .013 .012 [.095 .246 .037 .595
Center Long. .15 .039 {.145 .082 .032 .231
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the offset between the elastic axis of the springs and the
isolated pivot of the DAVI inertia bar. When the two-
dimensional DAVI was designed for this program, it was
realized that the offset of the elastic axis of the springs
from the isolated pivot would introduce a couple into the
platform. It was believed that this couple would be can-
celled by proper orientation of the DAVI system. However,
because of the poor results obtained in flight test, which
indicated the cancellation did not occur with the five-inch
offset of the isolated pivot from the elastic axis as shown
in Fiqgure 87(a), further flight testing was conducted in ]
which the offset from the isolated pivot to the spring ‘ |
elastic axis of each DAVI was reduced to three inches as ‘
shown in Figure 87(b). This was the maximum possible re- !
duction without redesigning the isolators. Results did show |
some improvement in the isolated platform's vibration char-
acteristics. However, overall performance remained generally
poor. A twelve-degree-of-freedom rigid body analysis, in-
cluding this offset, was made. It was determined that the
isolated systems antiresonance in pitch and roll were nearly
twice those for the vertical and in-plane translational
modes. Thus, although the isolated system was tuned in the
vertical and longitudinal directions to an antiresonance of
18.5 cps for the predominant four-per-rev excitation, the
pitching and rolling modes of response were to0 near res-
onance, thereby causing poor performance.

COMPARISON OF THEORY AND TEST i

Figures 98 through 101 show the flight test and theoretical
results in the form of transmissibility in which the output
accelerations on the platform were divided by the input
accelerations to the platform. The test results shown are
for the two-dimensional DAVI with rod-end bearings.

4

The theoretical results used a twelve-degree-of-freedom rigid
body analysis in which the offset between the elastic axis

of the springs and isolated pivot was included. Although

the theory did not predict good isolation, poor agreement

was obtained between theory and test. One reason for this .
poor correlation is that in the analysis, the effective |
hub forces and moments used as forcing functions can only

reasonably reproduce the inputs to the isolated platform.
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CONCLUSIONS

This flight test program has shown that DAVI isolation is
feasible when subject to actual helicopter vibratory
environment. From the results of this program, the fol-
lowing conclusions can be made.

l.

A DAVI isolation system can be designed to give iso-
lation at a frequency where an equivalent conventional
isolation system with the same static deflection is

in resonance.

For predominant helicopter excitation frequencies,
a DAVI isolation system will be less susceptible to
weight change than the equivalent conventional iso-
lation system.

For the four weight configurations tested, the DAVI
isolation system was less susceptible to rotor rpm
change than the equivalent conventional isolation
systems tested.

A DAVI isolation system should be designed to give
minimum internal coupling due to offset pivot and
elastic axis.

For complex inputs, such as those experienced in
helicopter vibratory environment, a three-dimensional
DAVI isolation system is required rather than an uni-
directional or two-dimensional DAVI.

Because of rigid body theory and the approximated
input to the theory, the theoretical results did not
compare with the test data, but the theory is adequate
to design a DAVI isolation system.
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